[go: up one dir, main page]

login
Number of Lyndon words (aperiodic necklaces) with 3n beads of 3 colors, n beads of each color.
2

%I #10 Oct 21 2021 10:46:38

%S 1,2,14,186,2880,50450,952854,19003474,394394880,8439756660,

%T 185033201150,4137181680698,94020326259264,2166105078791446,

%U 50489825369325118,1188777328563863850,28236363841594782720,675879582290807439794,16289254212695836475436

%N Number of Lyndon words (aperiodic necklaces) with 3n beads of 3 colors, n beads of each color.

%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>

%F a(n) = 1/(3n) * Sum_{d|n} mu(n/d) * (3d)! / d!^3, a(0) = 1.

%F a(n) = A029808(n)*2 = A074651(n)/3.

%Y Cf. A029808, A074651, A022553 (2n of 2 colors), A074656 (4n of 4 colors).

%K nonn

%O 0,2

%A _Christian G. Bower_, Aug 29 2002

%E a(0)=1 prepended by _Alois P. Heinz_, Aug 24 2015