[go: up one dir, main page]

login
A074528
a(n) = 2^n + 3^n + 6^n.
5
3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251
OFFSET
0,1
COMMENTS
From Álvar Ibeas, Mar 24 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n+1 [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^(n+1) [Kwak and Lee, 2001].
(End)
REFERENCES
J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. [Added by N. J. A. Sloane, Nov 12 2009]
LINKS
Hakan Icoz, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
M. W. Hero and J. F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Math., 309 (2010), 6508-6514.
J. H. Kwak and J. Lee, Isomorphism classes of graph bundles. Can. J. Math., 42(4), 1990, pp. 747-761.
FORMULA
From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-6*x).
E.g.f.: exp(2*x) + exp(3*x) + exp(6*x). (End)
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3). - Wesley Ivan Hurt, Aug 21 2020
MATHEMATICA
Table[2^n + 3^n + 6^n, {n, 0, 20}]
LinearRecurrence[{11, -36, 36}, {3, 11, 49}, 30] (* Harvey P. Dale, May 02 2016 *)
PROG
(Magma) [2^n + 3^n + 6^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
(PARI) a(n)=2^n+3^n+6^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
A246985 is essentially identical.
Third row of A160449, shifted.
Sequence in context: A254536 A333514 A268414 * A246985 A326521 A340813
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Aug 23 2002
STATUS
approved