[go: up one dir, main page]

login
A074400
Sum of the even divisors of 2n.
45
2, 6, 8, 14, 12, 24, 16, 30, 26, 36, 24, 56, 28, 48, 48, 62, 36, 78, 40, 84, 64, 72, 48, 120, 62, 84, 80, 112, 60, 144, 64, 126, 96, 108, 96, 182, 76, 120, 112, 180, 84, 192, 88, 168, 156, 144, 96, 248, 114, 186, 144, 196, 108, 240, 144, 240, 160, 180, 120, 336, 124, 192
OFFSET
1,1
COMMENTS
Also alternating row sums of A236106. - Omar E. Pol, Jan 23 2014
Could also be called the twice sigma function, see first formula. - Omar E. Pol, Feb 05 2014
FORMULA
a(n) = 2*sigma(n) = 2*A000203(n).
Dirichlet g.f.: 2*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 06 2016
EXAMPLE
The even divisors of 12 are 12, 6, 4, 2, which sum to 24, so a(6) = 24.
MAPLE
with(numtheory): seq(2*sigma(n), n=1..65);
MATHEMATICA
f[n_] := Plus @@ Select[ Divisors[ 2n], EvenQ]; Array[f, 62] (* Robert G. Wilson v, Apr 09 2011 *)
PROG
(PARI) a(n) = 2 * sigma(n); \\ Joerg Arndt, Apr 14 2013
(PARI) a(n) = sumdiv(2*n, d, !(d%2) * d); \\ Michel Marcus, Jan 23 2014
CROSSREFS
k times sigma(n), k=1..6: A000203, this sequence, A272027, A239050, A274535, A274536.
Cf. A146076, which includes the zeros for odd n.
Sequence in context: A002511 A074383 A107505 * A264598 A165607 A109440
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Nov 25 2002
EXTENSIONS
More terms from Emeric Deutsch, May 24 2004
STATUS
approved