OFFSET
0,5
COMMENTS
Coefficient of q^0 is A006190(n+1).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
Index entries for linear recurrences with constant coefficients, signature (12,-50,72,21,-72,-50,-12,-1).
FORMULA
From Colin Barker, Nov 18 2017: (Start)
G.f.: x^4*(3 + x)*(12 - 66*x + 69*x^2 + 60*x^3 + 10*x^4) / (1 - 3*x - x^2)^4.
a(n) = 12*a(n-1) - 50*a(n-2) + 72*a(n-3) + 21*a(n-4) - 72*a(n-5) - 50*a(n-6) - 12*a(n-7) - a(n-8) for n>9.
(End)
EXAMPLE
The first 6 nu polynomials are nu(0)=1, nu(1)=3, nu(2)=10, nu(3)=33+3q, nu(4)=109+19q+10q^2, nu(5)=360+93q+66q^2+36q^3+3q^4, so the coefficients of q^1 are 0,0,0,0,0,36.
PROG
(PARI) concat(vector(4), Vec(x^4*(3 + x)*(12 - 66*x + 69*x^2 + 60*x^3 + 10*x^4) / (1 - 3*x - x^2)^4 + O(x^40))) \\ Colin Barker, Nov 18 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
EXTENSIONS
More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002
STATUS
approved