[go: up one dir, main page]

login
A074314
Deficient triangular numbers.
1
1, 3, 10, 15, 21, 45, 55, 91, 105, 136, 153, 171, 190, 231, 253, 325, 351, 406, 435, 465, 561, 595, 703, 741, 861, 903, 946, 1035, 1081, 1225, 1275, 1378, 1431, 1485, 1653, 1711, 1891, 1953, 2145, 2211, 2278, 2415, 2485, 2701, 2775, 2926, 3003, 3081, 3321
OFFSET
1,2
COMMENTS
Intersection of A000217 and A005100. - Altug Alkan, Mar 22 2018
LINKS
EXAMPLE
a(5)=21 because sum of aliquot divisors of 21( which is a triangular number) is 1+3+7=11 which is less than 21, hence it is deficient. 21 is 5th deficient triangular number.
MAPLE
with(numtheory): [select(n -> sigma(n) < 2*n, [seq(k*(k+1)/2, k=1..100)])]; # Muniru A Asiru, Mar 22 2018
MATHEMATICA
Select[Accumulate[Range[100]], DivisorSigma[1, #]<2#&] (* Harvey P. Dale, Jun 12 2023 *)
PROG
(GAP) Filtered(List([1..100], k->k*(k+1)/2), n->Sigma(n)<2*n); # Muniru A Asiru, Mar 22 2018
CROSSREFS
Sequence in context: A328987 A108770 A112355 * A077759 A278291 A247420
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, Sep 22 2002
STATUS
approved