[go: up one dir, main page]

login
A074214
Integers m such that F(m) and F(2m) have the same largest prime factor where F(k) denotes the k-th Fibonacci number.
1
3, 15, 21, 23, 25, 29, 33, 35, 39, 43, 45, 51, 55, 59, 63, 65, 75, 82, 83, 85, 87, 93, 99, 105, 107, 109, 111, 115, 119, 123, 125, 127, 131, 132, 133, 135, 137, 139, 142, 143, 145, 147, 151, 153, 158, 161, 166, 171, 173, 175, 179, 181, 183, 185, 187, 189, 191
OFFSET
1,1
COMMENTS
Why are even values rare? (First one is 82.)
LINKS
EXAMPLE
F(15) = 610 = 2*5*61 and F(30) = 832040 = 2^3*5*11*31*61 hence 15 is in the sequence.
MATHEMATICA
Select[Range[3, 200], FactorInteger[Fibonacci[#]][[-1, 1]]==FactorInteger[ Fibonacci[2#]][[-1, 1]]&] (* Harvey P. Dale, Sep 04 2018 *)
PROG
(PARI) f(n) = vecmax(factor(fibonacci(n))[, 1]); \\ A060385
isok(m) = (m>2) && (f(m) == f(2*m)); \\ Michel Marcus, Feb 18 2021
CROSSREFS
Sequence in context: A048087 A316751 A001897 * A036897 A129966 A354675
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 17 2002
EXTENSIONS
More terms from Don Reble, Sep 20 2002
STATUS
approved