[go: up one dir, main page]

login
A074087
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,3).
6
0, 0, 0, 6, 33, 144, 570, 2118, 7587, 26448, 90420, 304470, 1013061, 3338112, 10911150, 35423862, 114342855, 367242336, 1174368360, 3741029094, 11876859369, 37591894320, 118659631650, 373630740966, 1173847761003
OFFSET
0,4
COMMENTS
The coefficient of q^0 is A014983(n+1).
LINKS
M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
FORMULA
G.f.: (6*x^3 +9*x^4)/(1-2*x-3*x^2)^2.
a(n) = 4*a(n-1) +2*a(n-2) -12*a(n-3) -9*a(n-4) for n>=5.
EXAMPLE
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=7, nu(3)=20+6q, nu(4)=61+33q+21q^2, nu(5)=182+144q+120q^2+78q^3+18q^4, so the coefficients of q^1 are 0,0,0,6,33,144.
MATHEMATICA
b=2; lambda=3; expon=1; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0}, LinearRecurrence[{4, 2, -12, -9}, {0, 0, 6, 33}, 50]] (* G. C. Greubel, May 26 2018 *)
PROG
(PARI) x='x+O('x^30); concat([0, 0, 0], Vec((6*x^3 +9*x^4)/(1-2*x-3*x^2)^2)) \\ G. C. Greubel, May 26 2018
(Magma) I:=[0, 0, 6, 33]; [0] cat [n le 4 select I[n] else 4*Self(n-1) + 2*Self(n-2) -12*Self(n-3) -9*Self(n-4): n in [1..30]]; // G. C. Greubel, May 26 2018
CROSSREFS
Coefficients of q^0, q^2 and q^3 are in A014983, A074088 and A074089. Related sequences with other values of b and lambda are in A074082-A074086.
Sequence in context: A073375 A089097 A120009 * A297592 A255613 A022730
KEYWORD
nonn,easy
AUTHOR
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
EXTENSIONS
Edited by Dean Hickerson, Aug 21 2002
STATUS
approved