%I #18 May 03 2019 07:21:32
%S 0,0,0,1,2,3,5,8,13,24,45,85,160,297,550,1024,1920,3626,6885,13107,
%T 24989,47709,91225,174760,335462,645120,1242600,2396745,4628480,
%U 8948385,17318945,33554432,65074253,126320640,245424829,477218560,928645120,1808414181,3524082400
%N Number of binary Lyndon words of length n with trace 1 and subtrace 1 over Z_2.
%C Same as the number of binary Lyndon words of length n with trace 1 and subtrace 1 over GF(2).
%H Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI/GP scripts for miscellaneous math problems</a>
%H F. Ruskey, <a href="http://combos.org/TSlyndonZ2">Binary Lyndon words with given trace and subtrace</a>
%H F. Ruskey, <a href="http://combos.org/TSlyndonF2">Binary Lyndon words with given trace and subtrace over GF(2)</a>
%F a(2n) = A042981(2n), a(2n+1) = A042982(2n+1). This follows from Cattell et al. (see A042979), Main Theorem on p. 33 and Theorem 4 on p. 44.
%Y Cf. A074027, A074028, A074029.
%K easy,nonn
%O 1,5
%A _Frank Ruskey_ and Nate Kube, Aug 21 2002
%E Corrected by _Franklin T. Adams-Watters_, Oct 25 2006
%E Terms a(33) onward from _Max Alekseyev_, Apr 09 2013