%I #17 May 03 2019 07:21:51
%S 0,0,1,1,2,2,4,6,13,24,48,85,160,288,541,1008,1920,3626,6912,13107,
%T 24989,47616,91136,174590,335462,645120,1242904,2396745,4628480,
%U 8947294,17317888,33552384,65074253,126320640,245428574,477218560,928645120,1808400384,3524068955
%N Number of binary Lyndon words of length n with trace 0 and subtrace 1 over Z_2.
%C Same as the number of binary Lyndon words of length n with trace 0 and subtrace 1 over GF(2).
%H Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI/GP scripts for miscellaneous math problems</a>
%H F. Ruskey, <a href="http://combos.org/TSlyndonZ2">Binary Lyndon words with given trace and subtrace</a>
%H F. Ruskey, <a href="http://combos.org/TSlyndonF2">Binary Lyndon words with given trace and subtrace over GF(2)</a>
%F a(2n) = A042980(2n), a(2n+1) = A042979(2n+1). This follows from Cattell et al. (see A042979), Main Theorem on p. 33 and Theorem 4 on p. 44.
%e a(5;0,1)=2 since the two binary Lyndon words of trace 0, subtrace 1 and length 5 are { 00011, 00101 }.
%Y Cf. A074027, A074029, A074030.
%K easy,nonn
%O 1,5
%A _Frank Ruskey_ and Nate Kube, Aug 21 2002
%E Terms a(33) onward from _Max Alekseyev_, Apr 09 2013