[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073400 Coefficient triangle of polynomials (falling powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073399. 6
2, 9, 33, 45, 396, 831, 243, 3744, 18297, 28236, 1377, 32481, 273483, 968679, 1210140, 8019, 268029, 3418767, 20681811, 58920534, 62686440, 47385, 2130138, 38186478, 347584284, 1683064737, 4075425738, 3810867480 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The row polynomials are q(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,...
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073399(k,m).
LINKS
Wolfdieter Lang, First 7 rows.
FORMULA
Recursion for row polynomials defined in the comments: see A073401.
EXAMPLE
k=2: U2(n)=((9*n+30)*(n+1)*U0(n+1)+(9*n+33)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 9,33; 45,396,831; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
CROSSREFS
Sequence in context: A170872 A123142 A122097 * A048498 A215695 A289600
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 23:09 EDT 2024. Contains 375519 sequences. (Running on oeis4.)