[go: up one dir, main page]

login
A073395
Product of sums of prime factors of n: with and without repetition.
2
0, 4, 9, 8, 25, 25, 49, 12, 18, 49, 121, 35, 169, 81, 64, 16, 289, 40, 361, 63, 100, 169, 529, 45, 50, 225, 27, 99, 841, 100, 961, 20, 196, 361, 144, 50, 1369, 441, 256, 77, 1681, 144, 1849, 195, 88, 625, 2209, 55, 98, 84, 400, 255, 2809, 55, 256, 117, 484
OFFSET
1,2
FORMULA
a(n) = A008472(n)*A001414(n).
a(m) is a square for all squarefree numbers m.
a(p^k) = k*p^2 for primes p.
EXAMPLE
a(15) = (3+5)*(3+5) = 8*8 = 64 (n squarefree); a(16) = (2)*(2+2+2+2) = 2*8 = 16 (n prime-power); a(17) = (17)*(17) = 289 (n prime); a(18) = (2+3)*(2+3+3) = 5*8 = 40.
MATHEMATICA
a[n_] := With[{fi = FactorInteger[n]}, Plus @@ fi[[All, 1]]*Plus @@ Apply[Times, fi, 1]]; a[1]=0; Table[a[n], {n, 1, 57}] (* Jean-François Alcover, Jul 19 2012 *)
PROG
(Haskell)
a073395 n = a008472 n * a001414 n
-- Reinhard Zumkeller, Oct 28 2015 (fixed), Mar 29 2012
(Python)
from sympy import primefactors, factorint
def a001414(n):
f=factorint(n)
return sum([i*f[i] for i in f])
def a(n): return 0 if n==1 else sum(primefactors(n))*a001414(n)
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 23 2017
CROSSREFS
Cf. A073396.
Sequence in context: A050399 A072995 A354165 * A064549 A304203 A087687
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Jul 30 2002
STATUS
approved