[go: up one dir, main page]

login
A073230
Decimal expansion of (1/e)^e.
18
0, 6, 5, 9, 8, 8, 0, 3, 5, 8, 4, 5, 3, 1, 2, 5, 3, 7, 0, 7, 6, 7, 9, 0, 1, 8, 7, 5, 9, 6, 8, 4, 6, 4, 2, 4, 9, 3, 8, 5, 7, 7, 0, 4, 8, 2, 5, 2, 7, 9, 6, 4, 3, 6, 4, 0, 2, 4, 7, 3, 5, 4, 1, 5, 6, 6, 7, 3, 6, 3, 3, 0, 0, 3, 0, 7, 5, 6, 3, 0, 8, 1, 0, 4, 0, 8, 8, 2, 4, 2, 4, 5, 3, 3, 7, 1, 4, 6, 7, 7, 4, 5, 6, 7
OFFSET
0,2
COMMENTS
(1/e)^e = e^(-e) = 1/(e^e) (reciprocal of A073226).
The power tower function f(x)=x^(x^(x^...)) is defined on the closed interval [e^(-e),e^(1/e)]. - Lekraj Beedassy, Mar 17 2005
REFERENCES
Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, Solution to problem 8A (Power Tower) p. 240.
LINKS
J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see the Appendix.
EXAMPLE
0.06598803584531253707679018759...
MATHEMATICA
a=IntegerDigits[IntegerPart[(1/E)^E*10^99]]; PrependTo[a, 0] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2008 *)
RealDigits[(1/E)^E, 10, 100][[1]] (* Alonso del Arte, Aug 26 2011 *)
PROG
(PARI) exp(-1)^exp(1)
(Magma) Exp(-1)^Exp(1); // G. C. Greubel, May 29 2018
CROSSREFS
Cf. A001113 (e), A068985 (1/e), A073229 (e^(1/e)), A072364 ((1/e)^(1/e)), A073226 (e^e).
Sequence in context: A242761 A200477 A269768 * A134881 A229983 A251859
KEYWORD
cons,nonn
AUTHOR
Rick L. Shepherd, Jul 22 2002
STATUS
approved