[go: up one dir, main page]

login
A073017
Decimal expansion of the Product_{n>=1} (1 + 1/n^3).
10
2, 4, 2, 8, 1, 8, 9, 7, 9, 2, 0, 9, 8, 8, 7, 0, 3, 2, 8, 7, 3, 6, 0, 4, 1, 4, 3, 6, 1, 7, 9, 1, 4, 6, 3, 5, 8, 1, 1, 8, 3, 6, 2, 9, 4, 4, 7, 8, 3, 3, 9, 0, 4, 9, 7, 6, 3, 2, 7, 4, 9, 9, 7, 4, 7, 2, 6, 4, 4, 4, 7, 3, 4, 1, 2, 0, 8, 6, 8, 3, 6, 8, 1, 2, 3, 8, 0, 5, 5, 0, 1, 5, 7, 2, 0, 5, 9, 0, 4, 3, 8, 8, 1, 3, 8
OFFSET
1,1
COMMENTS
Let X_1, X_2, ... be a sequence of independent Bernoulli trials with probability of success 1/n^3. Let Y be the position of the last success in the sequence. 1.428189... is the expected value of Y. - Geoffrey Critzer, Aug 19 2019
If m tends to infinity, Product_{k>=1} (1 + m/k^3) ~ exp(2*Pi*m^(1/3)/sqrt(3)) / (2^(3/2)*Pi^(3/2)*sqrt(m)). - Vaclav Kotesovec, Aug 30 2024
FORMULA
Equals cosh(1/2 * sqrt(3) * Pi)/Pi.
Equals exp(Sum_{j>=1} (-(-1)^j*zeta(3*j)/j)). - Vaclav Kotesovec, Mar 28 2019
Equals Product_{n>=1} (1 + 1/(n^2 + n)). - Amiram Eldar, Sep 01 2020
Equals 3*Product_{n >= 2} (1-n^(-3)) = 3*A109219. - Robert FERREOL, Oct 06 2021
EXAMPLE
2.42818979209887032873604143617914635811836294478339049763...
MATHEMATICA
RealDigits[ Cosh[Sqrt[3]*Pi/2]/Pi, 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Aug 03 2002
STATUS
approved