OFFSET
1,2
COMMENTS
See references and additional links in A094644.
The Riemann hypothesis holds if and only if the inequality sigma(n)/(n*log(log(n))) < exp(gamma) is valid for all n >= 5041, (G. Robin, 1984). - Peter Luschny, Oct 18 2020
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..2000
Paul Erdős and S. K. Zaremba, The arithmetic function Sum_{d|n} log d/d, Demonstratio Mathematica, Vol. 6 (1973), pp. 575-579.
T. H. Gronwall, Some Asymptotic Expressions in the Theory of Numbers, Trans. Amer. Math. Soc., Vol. 14, No. 1 (1913), pp. 113-122.
Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, arXiv:1303.1856 [math.NT], 2013.
Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. Amer. Math. Soc., 50 (2013), 527-628.
Simon Plouffe, The exp(gamma).
G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant.
Eric Weisstein's World of Mathematics, Gronwall's Theorem.
Eric Weisstein's World of Mathematics, Mertens Theorem, Equations 2-3.
Eric Weisstein's World of Mathematics, Robin's Theorem.
FORMULA
By Mertens theorem, equals lim_{m->infinity}(1/log(prime(m))*Product_{k=1..m} 1/(1-1/prime(k))). - Stanislav Sykora, Nov 14 2014
Equals limsup_{n->oo} sigma(n)/(n*log(log(n))) (Gronwall, 1913). - Amiram Eldar, Nov 07 2020
Equals limsup_{n->oo} (Sum_{d|n} log(d)/d)/(log(log(n)))^2 (Erdős and Zaremba, 1973). - Amiram Eldar, Mar 03 2021
Equals Product_{k>=1} (1-1/(k+1))*exp(1/k). - Amiram Eldar, Mar 20 2022
Equals lim_{n->oo} n * Product_{prime p<=n} p^(1/(1-p)). - Thomas Ordowski, Jan 30 2023
Equals Product_{k>=1} (k/sqrt(2))^((-1)^k/(k*log(2))). - Antonio Graciá Llorente, Oct 11 2024
Equals lim_{n->oo} (1/log(n))*Product_{prime p<=n} p/(p - 1) [Mertens] (see Finch at p. 31). - Stefano Spezia, Oct 27 2024
EXAMPLE
Exp(gamma) = 1.7810724179901979852365041031071795491696452143034302053...
MATHEMATICA
RealDigits[ E^(EulerGamma), 10, 110] [[1]]
PROG
(PARI) exp(Euler)
(Magma) R:=RealField(100); Exp(EulerGamma(R)); // G. C. Greubel, Aug 27 2018
CROSSREFS
KEYWORD
AUTHOR
Robert G. Wilson v, Aug 03 2002
STATUS
approved