[go: up one dir, main page]

login
A073004
Decimal expansion of exp(gamma).
50
1, 7, 8, 1, 0, 7, 2, 4, 1, 7, 9, 9, 0, 1, 9, 7, 9, 8, 5, 2, 3, 6, 5, 0, 4, 1, 0, 3, 1, 0, 7, 1, 7, 9, 5, 4, 9, 1, 6, 9, 6, 4, 5, 2, 1, 4, 3, 0, 3, 4, 3, 0, 2, 0, 5, 3, 5, 7, 6, 6, 5, 8, 7, 6, 5, 1, 2, 8, 4, 1, 0, 7, 6, 8, 1, 3, 5, 8, 8, 2, 9, 3, 7, 0, 7, 5, 7, 4, 2, 1, 6, 4, 8, 8, 4, 1, 8, 2, 8, 0, 3, 3, 4, 8, 2
OFFSET
1,2
COMMENTS
See references and additional links in A094644.
The Riemann hypothesis holds if and only if the inequality sigma(n)/(n*log(log(n))) < exp(gamma) is valid for all n >= 5041, (G. Robin, 1984). - Peter Luschny, Oct 18 2020
LINKS
Paul Erdős and S. K. Zaremba, The arithmetic function Sum_{d|n} log d/d, Demonstratio Mathematica, Vol. 6 (1973), pp. 575-579.
T. H. Gronwall, Some Asymptotic Expressions in the Theory of Numbers, Trans. Amer. Math. Soc., Vol. 14, No. 1 (1913), pp. 113-122.
Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, arXiv:1303.1856 [math.NT], 2013.
Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. Amer. Math. Soc., 50 (2013), 527-628.
Simon Plouffe, The exp(gamma).
G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant.
Eric Weisstein's World of Mathematics, Gronwall's Theorem.
Eric Weisstein's World of Mathematics, Mertens Theorem, Equations 2-3.
Eric Weisstein's World of Mathematics, Robin's Theorem.
FORMULA
By Mertens theorem, equals lim_{m->infinity}(1/log(prime(m))*Product_{k=1..m} 1/(1-1/prime(k))). - Stanislav Sykora, Nov 14 2014
Equals limsup_{n->oo} sigma(n)/(n*log(log(n))) (Gronwall, 1913). - Amiram Eldar, Nov 07 2020
Equals limsup_{n->oo} (Sum_{d|n} log(d)/d)/(log(log(n)))^2 (Erdős and Zaremba, 1973). - Amiram Eldar, Mar 03 2021
Equals Product_{k>=1} (1-1/(k+1))*exp(1/k). - Amiram Eldar, Mar 20 2022
Equals lim_{n->oo} n * Product_{prime p<=n} p^(1/(1-p)). - Thomas Ordowski, Jan 30 2023
Equals Product_{k>=1} (k/sqrt(2))^((-1)^k/(k*log(2))). - Antonio Graciá Llorente, Oct 11 2024
Equals lim_{n->oo} (1/log(n))*Product_{prime p<=n} p/(p - 1) [Mertens] (see Finch at p. 31). - Stefano Spezia, Oct 27 2024
EXAMPLE
Exp(gamma) = 1.7810724179901979852365041031071795491696452143034302053...
MATHEMATICA
RealDigits[ E^(EulerGamma), 10, 110] [[1]]
PROG
(PARI) exp(Euler)
(Magma) R:=RealField(100); Exp(EulerGamma(R)); // G. C. Greubel, Aug 27 2018
CROSSREFS
Cf. A001620 (Euler-Mascheroni constant, gamma).
Cf. A001113, A067698, A080130, A091901, A094644 (continued fraction for exp(gamma)), A246499.
Sequence in context: A093828 A373636 A010514 * A256670 A021132 A019936
KEYWORD
cons,nonn,easy,changed
AUTHOR
Robert G. Wilson v, Aug 03 2002
STATUS
approved