[go: up one dir, main page]

login
Least k >=1 such that floor(n/k) is squarefree.
1

%I #13 Nov 20 2017 22:02:32

%S 1,1,1,2,1,1,1,3,3,1,1,2,1,1,1,3,1,3,1,2,1,1,1,4,4,1,2,2,1,1,1,3,1,1,

%T 1,5,1,1,1,3,1,1,1,2,2,1,1,7,7,5,1,2,1,4,1,4,1,1,1,2,1,1,2,3,1,1,1,2,

%U 1,1,1,5,1,1,2,2,1,1,1,3,6,1,1,2,1,1,1,3,1,3,1,2,1,1,1,5,1,5,3,3,1,1,1,3,1

%N Least k >=1 such that floor(n/k) is squarefree.

%H Antti Karttunen, <a href="/A072906/b072906.txt">Table of n, a(n) for n = 1..16384</a>

%F sum(k=1, a(k)) is asymptotic to C*n with C=1.9091.....

%t Array[Block[{k = 1}, While[! SquareFreeQ@ Floor[#/k], k++]; k] &, 120] (* _Michael De Vlieger_, Nov 20 2017 *)

%o (PARI) a(n)=if(n<0,0,s=1; while(issquarefree(floor(n/s))==0,s++); s)

%K easy,nonn

%O 1,4

%A _Benoit Cloitre_, Aug 10 2002