[go: up one dir, main page]

login
A072560
Denominators of w(n) where w(1)=w(2)=w(3)=1, w(n)=(w(n-1)*w(n-2)+(w(n-1)+w(n-2))/3) / w(n-3).
3
3, 9, 3, 3, 1, 3, 3, 9, 3, 3, 1, 3, 3, 9, 3, 1, 1, 1, 3, 9, 3, 3, 1, 3, 3, 9, 3, 3, 1, 3, 3, 9, 3, 1, 1, 1, 3, 9, 3, 3, 1, 3, 3, 9, 3, 3, 1, 3, 3, 9, 3, 1, 1, 1, 3, 9, 3, 3, 1, 3, 3, 9, 3, 3, 1, 3, 3, 9, 3, 1, 1, 1, 3, 9, 3, 3, 1, 3, 3, 9, 3, 3, 1, 3, 3, 9, 3, 1, 1, 1, 3, 9, 3, 3, 1, 3, 3, 9, 3, 3, 1, 3, 3, 9, 3
OFFSET
1,1
COMMENTS
Sequence contains 1,3 or 9 only and is periodic with period (3,9,3,3,1,3,3,9,3,3,1,3,3,9,3,1,1,1) of length 18.
EXAMPLE
The sequence w() begins: 1, 1, 1, 5/3, 23/9, 17/3, 31/3, 25, 143/3, 353/3, 2039/9, 1685/3, 3251/3, 2689, 15571/3, ...
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {3, 9, 3, 3, 1, 3, 3, 9, 3, 3, 1, 3, 3, 9, 3, 1, 1, 1}, 105] (* Ray Chandler, Aug 25 2015 *)
PadRight[{}, 120, {3, 9, 3, 3, 1, 3, 3, 9, 3, 3, 1, 3, 3, 9, 3, 1, 1, 1}] (* Harvey P. Dale, Apr 04 2022 *)
CROSSREFS
Sequence in context: A091670 A375503 A201416 * A290506 A303111 A299633
KEYWORD
nonn,frac
AUTHOR
Benoit Cloitre, Aug 06 2002
STATUS
approved