[go: up one dir, main page]

login
A072548
a(n) = sigma(n) mod PrimePi(n).
3
0, 0, 1, 0, 0, 0, 3, 1, 2, 2, 3, 2, 0, 0, 1, 4, 4, 4, 2, 0, 4, 6, 6, 4, 6, 4, 2, 0, 2, 10, 8, 4, 10, 4, 3, 2, 0, 8, 6, 3, 5, 2, 0, 8, 2, 3, 4, 12, 3, 12, 8, 6, 8, 8, 8, 0, 10, 9, 15, 8, 6, 14, 1, 12, 0, 11, 12, 1, 11, 12, 15, 11, 9, 19, 14, 12, 0, 14, 10, 11, 16, 15, 17, 16, 17, 5, 19, 18, 18
OFFSET
2,7
LINKS
FORMULA
a(n) = A000203(n) mod A000720(n).
MAPLE
with(numtheory): seq(modp(sigma(n), pi(n)), n=2..100); # Muniru A Asiru, Dec 10 2018
MATHEMATICA
Table[Mod[DivisorSigma[1, w], PrimePi[w]], {w, 1, 128}]
PROG
(PARI) a(n) = sigma(n) % primepi(n); \\ Michel Marcus, Dec 10 2018
(Magma) [SumOfDivisors(n) mod (#PrimesUpTo(n)): n in [2..100]]; // Vincenzo Librandi, Dec 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 05 2002
STATUS
approved