[go: up one dir, main page]

login
A072392
Numbers n such that reverse(n) = phi(n) (mod n).
0
21, 27, 37, 63, 270, 291, 397, 1545, 1853, 2991, 6102, 15503, 27036, 48776, 198683, 200882, 274536, 1061361, 2348128, 2723436, 2746836, 3542805, 3564217, 3868867, 3962197, 4438616, 19844683, 46676013, 69460293, 198444683, 202195682, 297828396, 309520655
OFFSET
1,1
EXAMPLE
reverse(48776) = 67784 = 19008 (mod 48776) and 19008 = phi(48776), so 48776 is a term of the sequence.
MATHEMATICA
Select[Range[10^5], Mod[ FromDigits[Reverse[IntegerDigits[n]]], # ] == EulerPhi[ # ] &]
CROSSREFS
Sequence in context: A206347 A362008 A247316 * A144415 A098898 A098768
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Jul 21 2002
EXTENSIONS
More terms from Sean A. Irvine, Sep 28 2024
STATUS
approved