OFFSET
0,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) ~ exp(2*sqrt(2)*Pi*n^(3/4) / (3*15^(1/4)) + 2*Zeta(3) * sqrt(15*n) / Pi^2 + (7*5^(1/4)*Pi / (8*sqrt(2)*3^(3/4)) - 30*sqrt(2) * 15^(1/4) * Zeta(3)^2 /Pi^5) * n^(1/4) + 1200*Zeta(3)^3/Pi^8 - 71*Zeta(3)/(16*Pi^2) + 1/12) * Pi^(1/12) / (4*A * 2^(5/12) * 15^(13/48) * n^(37/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 31 2019
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1 - x^k)^Floor[(k + 2)^2/4], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 31 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 16 2002
STATUS
approved