[go: up one dir, main page]

login
A072268
a(0)=1; a(n+1) = 1 + f(a(n))^2, where f(x) is the largest prime factor of x (A006530).
6
1, 2, 5, 26, 170, 290, 842, 177242, 160802, 2810, 78962, 9223370, 5033760602, 2935496262242, 2154284576409188208716642, 1379590379356276893461978662419832989306970202, 10320758390549056348725939119133160378521185060950774444682
OFFSET
0,2
COMMENTS
Is the sequence bounded?
Essentially the same as A031439; a(n) = A031439(n-1)^2 + 1. - Charles R Greathouse IV, May 08 2009
EXAMPLE
Given a(5)=290: a(6) = 1 + lpf(a(5))^2 = 1 + lpf(290)^2 = 1 + 29^2 = 842.
MAPLE
with(numtheory): a[0]:=1: a[1]:=2: for n from 2 to 20 do b:=factorset(a[n-1]): a[n]:=1+op(nops(b), b)^2: od: seq(a[n], n=0..20); # Emeric Deutsch, Feb 05 2006
MATHEMATICA
NestList[1+FactorInteger[#][[-1, 1]]^2&, 1, 17] (* Harvey P. Dale, Feb 01 2022 *)
CROSSREFS
Cf. A031439.
Sequence in context: A226170 A371614 A334639 * A019014 A128595 A358715
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 08 2002
EXTENSIONS
More terms from Emeric Deutsch, Feb 05 2006
a(16) corrected by T. D. Noe, Nov 26 2007
STATUS
approved