[go: up one dir, main page]

login
A072016
Numbers k such that gcd(k, reverse(k)) = 27 = 3^3, where reverse(x) = A004086(x).
4
2889, 3699, 3888, 3969, 4779, 4887, 5589, 5697, 5778, 5859, 5886, 5967, 6399, 6669, 6777, 6885, 6939, 7398, 7479, 7587, 7668, 7695, 7749, 7776, 7857, 7884, 7938, 7965, 8289, 8397, 8559, 8667, 8775, 8829, 8883, 8937, 9099, 9288, 9369, 9396, 9477, 9558, 9585
OFFSET
1,1
COMMENTS
Solutions to gcd(k, reverse(k)) = 1,3,9 (lower powers of 3) are trivial (see A072005).
LINKS
EXAMPLE
2889 = 107*3*3*3, 9889 = 3*3*3*3*2*61.
MATHEMATICA
Select[Range[10^4], GCD[#, FromDigits[Reverse[IntegerDigits[#]]]] == 27 &] (* Vincenzo Librandi, Jul 11 2018 *)
PROG
(PARI) isok(n) = gcd(n, fromdigits(Vecrev(digits(n)))) == 27; \\ Michel Marcus, Jul 11 2018
(Magma) [n: n in [1..10^4] | Gcd(n, Seqint(Reverse(Intseq(n)))) eq 27]; // Vincenzo Librandi, Jul 11 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Labos Elemer, Jun 05 2002
STATUS
approved