[go: up one dir, main page]

login
A071921
Square array giving number of unimodal functions [n]->[m] for n>=0, m>=0, with a(0,m)=1 by definition, read by antidiagonals.
9
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 7, 1, 0, 1, 5, 16, 22, 11, 1, 0, 1, 6, 25, 50, 46, 16, 1, 0, 1, 7, 36, 95, 130, 86, 22, 1, 0, 1, 8, 49, 161, 295, 296, 148, 29, 1, 0, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 0
OFFSET
0,8
COMMENTS
If one uses a definition of unimodality that involves universal quantifiers on the domain of a function then a(0,m)=1 a priori.
FORMULA
a(n,m) = 1 if n=0, m>=0, a(n,m) = Sum_{k=0..m-1} C(2k+n-1,2k) otherwise.
EXAMPLE
Square array a(n,m) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 1, 4, 9, 16, 25, 36, 49, 64, ...
0, 1, 7, 22, 50, 95, 161, 252, 372, ...
0, 1, 11, 46, 130, 295, 581, 1036, 1716, ...
0, 1, 16, 86, 296, 791, 1792, 3612, 6672, ...
0, 1, 22, 148, 610, 1897, 4900, 11088, 22716, ...
0, 1, 29, 239, 1163, 4166, 12174, 30738, 69498, ...
0, 1, 37, 367, 2083, 8518, 27966, 78354, 194634, ...
MAPLE
a:= (n, m)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..m-1)):
seq(seq(a(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 22 2013
MATHEMATICA
a[0, 0] = 1; a[n_, m_] := Sum[Binomial[2k+n-1, 2k], {k, 0, m-1}]; Table[a[n - m, m], {n, 0, 12}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)
CROSSREFS
Main diagonal gives A088536 (for n>=1).
Sequence in context: A118340 A213276 A210391 * A003992 A337161 A246118
KEYWORD
nonn,easy,tabl
AUTHOR
Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002
STATUS
approved