[go: up one dir, main page]

login
A071848
a(n) = smallest positive integer that cannot be obtained using the number n at most n times and the operations +, -, *, /, where intermediate subexpressions must be integers.
2
2, 3, 5, 10, 13, 22, 38, 85, 138, 246, 547, 1121, 2792, 6379, 15021, 20870, 48309, 161629
OFFSET
1,1
COMMENTS
Joe Crump's page indicates that a(9) = 195 if noninteger subexpressions are permitted. - David W. Wilson, Jan 14 2007
EXAMPLE
a(3) = 5 because using 3 at most thrice we can have 3/3=1, 3-(3/3)=2, 3=3, 3+(3/3)=4 but we cannot obtain 5 this way.
a(14) != 3967 since 3967 = 3969 - 2 = 21 * 189 - 2 = (7 + 14) * (14*14 - 7) - 2 = (14/((14+14)/14) + 14) * (14*14 - 14/((14+14)/14)) - (14+14)/14.
PROG
(Python)
from functools import lru_cache
def a(n):
@lru_cache()
def f(m):
if m == 1: return {n}
out = set()
for j in range(1, m//2+1):
for x in f(j):
for y in f(m-j):
out.update([x + y, x - y, y - x, x * y])
if y and x%y == 0: out.add(x//y)
if x and y%x == 0: out.add(y//x)
return out
k, s = 1, set.union(*(f(i) for i in range(1, n+1)))
while k in s: k += 1
return k
print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Jul 28 2022
CROSSREFS
Cf. A060315.
Sequence in context: A084760 A186082 A103746 * A268176 A120938 A120610
KEYWORD
hard,more,nonn
AUTHOR
Koksal Karakus (karakusk(AT)hotmail.com), Jun 09 2002
EXTENSIONS
Definition corrected by David W. Wilson, Jan 14 2007
Definition changed (to reflect wording of the example) by Jason Taff (jtaff(AT)jburroughs.org), Apr 07 2010
a(14)-a(15) corrected and a(16) from Michael S. Branicky, Jul 28 2022
a(17)-a(18) from Sean A. Irvine, Aug 17 2024
STATUS
approved