[go: up one dir, main page]

login
A070895
Triangle read by rows where T(n+1,k)=T(n,k)+n*T(n-1,k) starting with T(n,n)=1 and T(n,k)=0 if n<k.
1
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 10, 6, 4, 1, 1, 26, 18, 8, 5, 1, 1, 76, 48, 28, 10, 6, 1, 1, 232, 156, 76, 40, 12, 7, 1, 1, 764, 492, 272, 110, 54, 14, 8, 1, 1, 2620, 1740, 880, 430, 150, 70, 16, 9, 1, 1, 9496, 6168, 3328, 1420, 636, 196, 88, 18, 10, 1, 1, 35696, 23568
OFFSET
0,4
COMMENTS
For n>k+1, T(n,k) is a multiple of k+2.
Eigentriangle of inverse of (-1)^(n-k)*A094587. Row sums are A187044. - Paul Barry, Mar 02 2011
FORMULA
T(n, k+1)=(T(n, k-1)-T(n-1, k))/k for 0<k<n.
EXAMPLE
Rows start: 1; 1,1; 2,1,1; 4,3,1,1; 10,6,4,1,1; etc.
Triangle begins
1,
1, 1,
2, 1, 1,
4, 3, 1, 1,
10, 6, 4, 1, 1,
26, 18, 8, 5, 1, 1,
76, 48, 28, 10, 6, 1, 1,
232, 156, 76, 40, 12, 7, 1, 1
Production matrix begins
1, 1,
1, 0, 1,
1, 1, 0, 1,
2, 1, 1, 0, 1,
4, 3, 1, 1, 0, 1,
10, 6, 4, 1, 1, 0, 1,
26, 18, 8, 5, 1, 1, 0, 1,
76, 48, 28, 10, 6, 1, 1, 0, 1,
232, 156, 76, 40, 12, 7, 1, 1, 0, 1
Inverse begins
1,
-1, 1,
-1, -1, 1,
0, -2, -1, 1,
0, 0, -3, -1, 1,
0, 0, 0, -4, -1, 1,
0, 0, 0, 0, -5, -1, 1,
0, 0, 0, 0, 0, -6, -1, 1
- Paul Barry, Mar 02 2011
CROSSREFS
Columns include A000085, A000932, A059480. Right hand columns effectively include A000012 (twice), A000027, A005843, A028552. Cf. A062323 for a triangle with similar formulas.
Sequence in context: A091351 A058730 A112705 * A127054 A125790 A370005
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, May 23 2002
STATUS
approved