[go: up one dir, main page]

login
A070869
a(1) = 16; a(n+1) = sum of a(n) and (a(n) written in base 2 and reversed).
0
16, 17, 34, 51, 102, 153, 306, 459, 882, 1197, 2646, 4347, 11484, 15273, 24864, 25443, 50886, 76329, 152274, 229371, 458742, 688113, 1277910, 2162607, 6193008, 6684333, 12631680, 12729219, 25434054, 38529033, 76302162, 115562715
OFFSET
1,1
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 125.
EXAMPLE
To get a(2) note that 16 = 10000 in base 2, reversing gives 00001, or 1 and so a(2) = 16 + 1 = 17.
MATHEMATICA
a[1] = 16; a[n_] := Block[{b = IntegerDigits[ a[n - 1], 2]}, FromDigits[ b + Reverse[b], 2]]; Table[ a[n], {n, 1, 35}]
CROSSREFS
Sequence in context: A041514 A041512 A267029 * A101196 A064637 A115942
KEYWORD
nonn,easy,base
AUTHOR
N. J. A. Sloane, May 19 2002
EXTENSIONS
More terms from Robert G. Wilson v, May 20 2002
STATUS
approved