[go: up one dir, main page]

login
A070387
a(n) = 5^n mod 41.
3
1, 5, 25, 2, 10, 9, 4, 20, 18, 8, 40, 36, 16, 39, 31, 32, 37, 21, 23, 33, 1, 5, 25, 2, 10, 9, 4, 20, 18, 8, 40, 36, 16, 39, 31, 32, 37, 21, 23, 33, 1, 5, 25, 2, 10, 9, 4, 20, 18, 8, 40, 36, 16, 39, 31, 32, 37, 21, 23, 33, 1, 5, 25, 2, 10, 9, 4, 20, 18, 8, 40, 36, 16, 39, 31, 32, 37
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-10) + a(n-11).
G.f.: ( -1-4*x-20*x^2+23*x^3-8*x^4+x^5+5*x^6-16*x^7+2*x^8+10*x^9-33*x^10 ) / ( (x-1)*(x^2+1)*(x^8-x^6+x^4-x^2+1) ). (End)
a(n) = a(n-20). - G. C. Greubel, Mar 16 2016
MATHEMATICA
PowerMod[5, Range[0, 50], 41] (* G. C. Greubel, Mar 16 2016 *)
PROG
(Sage) [power_mod(5, n, 41) for n in range(0, 77)] # Zerinvary Lajos, Nov 26 2009
(PARI) a(n) = lift(Mod(5, 41)^n); \\ Altug Alkan, Mar 16 2016
CROSSREFS
Sequence in context: A305837 A175555 A346994 * A331272 A123748 A050108
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved