[go: up one dir, main page]

login
A070154
Number of terms in the simple continued fraction expansion of Sum_{k=0..n}(-1)^k/(2k+1), the Leibniz-Gregory series for Pi/4.
1
1, 3, 4, 9, 5, 9, 14, 10, 10, 19, 16, 21, 22, 22, 24, 20, 19, 24, 28, 28, 29, 30, 39, 31, 44, 40, 44, 33, 41, 47, 44, 48, 54, 48, 60, 49, 63, 51, 65, 72, 64, 70, 78, 64, 79, 77, 74, 87, 75, 86, 82, 94, 88, 106, 106, 94, 104, 108, 87, 107, 86, 106, 98, 110, 115, 110, 105, 115
OFFSET
0,2
COMMENTS
Pi/4 = Sum_{k=>0} (-1)^k/(2k+1).
LINKS
FORMULA
Limit_{n -> infinity} a(n)/n = C = 1.6...
EXAMPLE
The simple continued fraction for Sum(k=0,10,(-1)^k/(2k+1)) is [0, 1, 4, 4, 1, 3, 54, 1, 2, 1, 1, 4, 11, 1, 2, 2] which contains 16 elements, hence a(10)=16.
MATHEMATICA
lcf[f_] := Length[ContinuedFraction[f]]; lcf /@ Accumulate[Table[(-1)^k/(2*k + 1), {k, 0, 100}]] (* Amiram Eldar, Apr 29 2022 *)
PROG
(PARI) for(n=1, 100, print1( length(contfrac(sum(i=0, n, (-1)^i/(2*i+1)))), ", "))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 06 2002
EXTENSIONS
Offset changed to 0 and a(0) inserted by Amiram Eldar, Apr 29 2022
STATUS
approved