[go: up one dir, main page]

login
A070025
At these values of k, the 1st, 2nd, 3rd and 4th cyclotomic polynomials all give prime numbers.
5
6, 150, 2730, 9000, 9240, 35280, 41760, 43050, 53280, 65520, 76650, 96180, 111030, 148200, 197370, 207480, 213360, 226380, 254280, 264600, 309480, 332160, 342450, 352740, 375450, 381990, 440550, 458790, 501030, 527070, 552030, 642360, 660810
OFFSET
1,1
COMMENTS
Numbers k such that k-1, k+1, k^2+k+1 and k^2+1 are all primes.
LINKS
EXAMPLE
For k = 6: 5, 7, 43 and 37 are prime values of the first 4 cyclotomic polynomials.
MATHEMATICA
lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[1+n+n^2]&&PrimeQ[1+n^2], AppendTo[lst, n]], {n, 10^6}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
Select[Range[10^6], Function[k, AllTrue[Cyclotomic[#, k] & /@ Range@ 4, PrimeQ]]] (* Michael De Vlieger, Jul 18 2017 *)
PROG
(PARI) is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024
KEYWORD
easy,nonn
AUTHOR
Labos Elemer, May 07 2002
STATUS
approved