[go: up one dir, main page]

login
A069565
a(0) = 1, a(n) = k*a(n-1) + 1 is a multiple of n-th prime. If no such number exists then a(n) = 0 and a(n+1) = k*a(n-1) + 1 is a multiple of (n+1)-th prime; i.e., a(r) = smallest multiple of the r-th prime = k* a(s) + 1 where a(s) is the last nonzero term.
0
1, 2, 3, 10, 21, 22, 221, 0, 2432, 9729, 19459, 136214, 1770783, 10624699, 446237359, 8478509822, 195005725907, 5655166051304, 90482656820865, 2171583763700761, 86863350548030441, 1216086907672426175
OFFSET
0,2
EXAMPLE
a(6) = 221 = 13*17. Hence there exists no number of the form k*221 + 1 which can be divisible by 17. Hence a(7) = 0 and a(8) = 2432 = 11*221 + 1 is divisible by 19.
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Mar 23 2002
EXTENSIONS
More terms from Robert G. Wilson v, Mar 27 2002
STATUS
approved