OFFSET
0,5
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Zhicheng Gao, Andrew MacFie and Daniel Panario, Counting words by number of occurrences of some patterns, The Electronic Journal of Combinatorics, 18 (2011), #P143.
FORMULA
G.f.: 1 / Product_{k>=3} (1 - z^binomial(k, 3)).
G.f.: Sum_{i>=0} x^(i*(i+1)*(i+2)/6) / Product_{j=1..i} (1 - x^(j*(j+1)*(j+2)/6)). - Ilya Gutkovskiy, Jun 08 2017
EXAMPLE
a(10) = 4 because we can write 10 = 10 = 4 + 4 + 1 + 1 = 4 + 1 + 1 + 1 + 1 + 1 = 1 + ... + 1.
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1-x^(k*(k+1)*(k+2)/6)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Franklin T. Adams-Watters, Apr 01 2002
STATUS
approved