[go: up one dir, main page]

login
A068845
Final digits of the smallest prime starting with n!.
2
1, 3, 1, 1, 1, 7, 1, 29, 17, 43, 29, 13, 47, 19, 73, 37, 19, 41, 31, 41, 31, 1, 1, 37, 31, 37, 59, 41, 53, 41, 47, 1, 1, 89, 37, 53, 73, 1, 1, 43, 151, 1, 47, 1, 509, 127, 71, 167, 67, 167, 149, 67, 61, 139, 67, 59, 107, 241, 1, 61, 1, 149, 293, 127, 71, 151, 337, 107, 1
OFFSET
1,2
COMMENTS
a(n)= 1 or a(n) >= the smallest prime larger than n. Conjecture: The terms are noncomposite numbers. Motivation: a composite number not coprime to n! cannot be a member.
REFERENCES
Amarnath Murthy, Smarandache Reciprocal function and an elementary inequality. Smarandache Notions Journal, Vol. 1-2-3, Spring 2000.
EXAMPLE
a(7) = 11 because the smallest prime starting with 7! = 5040 is 504011 and so the last digits are 11.
MAPLE
for i from 1 to 70 do a := nextprime(i!*10); b := 1; while(a-i!*10^b>=10^b) do b := b+1; a := nextprime(i!*10^b); end do; c[i] := a-i!*10^b; end do:q := seq(c[i], i=1..70);
MATHEMATICA
Table[p = i!; k = 1; While[IntegerDigits[p] != Take[IntegerDigits[x = NextPrime[y = p*10^k]], IntegerLength[p]], k += 1]; x - y, {i, 69}] (* Jayanta Basu, Aug 09 2013 *)
CROSSREFS
Cf. A068844.
Sequence in context: A276651 A374126 A185587 * A324910 A257100 A152884
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Mar 10 2002
EXTENSIONS
More terms from Sascha Kurz, Mar 17 2002
STATUS
approved