[go: up one dir, main page]

login
Decimal expansion of the smallest solution >0 to cos(x)=cos(x^2).
0

%I #14 Sep 25 2015 14:16:19

%S 2,0,5,6,0,0,9,6,4,5,3,6,1,2,1,9,3,8,2,6,0,4,2,4,8,2,1,7,5,7,4,7,0,5,

%T 4,9,5,4,0,4,2,1,4,2,4,6,3,3,2,4,2,6,2,5,9,3,5,2,3,6,1,8,9,4,7,4,0,7,

%U 0,4,5,1,1,2,3,9,7,2,7,6,8,4,5,1,6,0,1,5,4,8,9,8,7,3,6,4,0,7,4,1,8,2,0,1,3

%N Decimal expansion of the smallest solution >0 to cos(x)=cos(x^2).

%C Let d(n) be defined to be the smallest solution to cos(x)=cos(x^n) then lim n -> infinity d(n) exists and equals 2.36338112904...= w004 in Plouffe's inverter.

%F This number is (-1+sqrt(1+8*Pi))/2 = 2.0560096...

%t RealDigits[(Sqrt[8*Pi+1]-1)/2,10,120][[1]] (* _Harvey P. Dale_, Sep 25 2015 *)

%K easy,nonn,cons

%O 1,1

%A _Benoit Cloitre_, Mar 30 2002