[go: up one dir, main page]

login
A067663
Sequence gives values of gcd(k!+1, k^k-1) when not equal to 1 in order of appearance.
0
2, 3, 5, 11, 7, 19, 11, 13, 17, 19, 43, 23, 401, 29, 31, 67, 37, 41, 43, 47, 53, 59, 61, 131, 67, 71, 73, 79, 163, 83, 89, 179, 97, 101, 103, 107, 109, 113, 227, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 347, 179, 181, 191, 193, 197, 199, 419, 211, 443, 223
OFFSET
1,1
COMMENTS
Sequence appears to contain each prime number once or twice.
FORMULA
For some even k: gcd(k!+1, k^k-1) = k+1;
for some odd k: gcd(k!+1, k^k-1) = 2*k+1.
EXAMPLE
For k=25, gcd(k!+1, k^k-1) = 401;
for k=788, gcd(k!+1, k^k-1) = 4729.
MAPLE
select(x-> x>1, [seq(igcd(k!+1, k^k-1), k=1..300)])[]; # Alois P. Heinz, Oct 26 2019
CROSSREFS
Sequence in context: A084331 A084333 A288833 * A112037 A087583 A372284
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 03 2002
STATUS
approved