[go: up one dir, main page]

login
A067549
Determinant of n X n matrix whose diagonal are the first n primes and all other elements are 1's.
4
2, 5, 22, 140, 1448, 17856, 291456, 5338368, 119102976, 3371378688, 102163230720, 3708532408320, 149444916019200, 6320831260262400, 292612319045222400, 15301128319716556800, 891900404470539878400, 53771252059997208576000, 3564336303465704718336000
OFFSET
1,1
EXAMPLE
The matrix begins:
2 1 1 1 1 1 1 ...
1 3 1 1 1 1 1 ...
1 1 5 1 1 1 1 ...
1 1 1 7 1 1 1 ...
1 1 1 1 11 1 1 ...
1 1 1 1 1 13 1 ...
MAPLE
d:=(i, j)->`if`(i<>j, 1, ithprime(i)):
seq(LinearAlgebra[Determinant](Matrix(n, d)), n=1..20); # Muniru A Asiru, Feb 16 2018
MATHEMATICA
Table[ Det[ DiagonalMatrix[ Table[ Prime[ i ] - 1, {i, 1, n} ] ] + 1 ], {n, 1, 20} ]
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, if(i == j, prime(i), 1))) \\ Iain Fox, Feb 15 2018
CROSSREFS
Sequence in context: A342432 A246542 A001437 * A262842 A361331 A342967
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jan 28 2002
EXTENSIONS
a(18)-a(19) from Iain Fox, Feb 15 2018
STATUS
approved