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Abstract

Let x be a positive integer. We give an asymptotic formula for the number of primes
in the set {bx/nc : 1 ≤ n ≤ x} and give some related results.

1. Introduction

There is an extensive body of research on arithmetic functions with integer parts

of real-valued functions, most commonly, with Beatty bαn+ βc sequences; see, for

example, [1, 3, 6, 12, 13], and Piatetski–Shapiro bnγc sequences; see, for example, [2,

4, 5, 7, 17, 20], with real α, β and γ.

Recently there has been much research on sums of the form∑
n≤x

f
(⌊x
n

⌋)
, (1)

where throughout x is a positive integer, f is an arithmetic function, and b·c is

the floor function. In [8] the authors used exponential sums to find asymptotic

bounds and formulas for various classes of arithmetic functions. Subsequent papers

by various authors have mainly been focused on improvements in exponential sum

techniques (see [9, 11, 15, 18, 19, 22, 23, 24, 25, 26, 27]).

It is natural to examine more fundamental questions about the set{bx/nc : 1 ≤
n ≤ x}. In [14] an exact formula for the cardinality of this set was given. In this

paper, we count primes in this floor function set. Let

G(x) =
{⌊x

n

⌋
: 1 ≤ n ≤ x,

⌊x
n

⌋
is prime

}
,

and set G(x) := |G(x)|. Using exponential sums, this quantity can estimated with

the following result.

Theorem 1. We have

G(x) =
4
√
x

log x
+O

( √
x

(log x)2

)
.
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The OEIS sequence A068050 attributes to Adams-Watters the statement that

for p prime not equal to 3 we have G(p) = G(p − 1) + 1. We prove the following

result.

Theorem 2. For any prime x not equal to 3 we have G(x) = G(x− 1) + 1.

It is possible to link up G(x) and G(x − 1) for some other classes of x. An

example is the following result.

Theorem 3. Let x = pq with p, q odd primes, not necessarily distinct. Then

G(x) = G(x− 1) + 1.

These relationships between G(x) and G(x−1) may generalize, but with consid-

erable difficulties. For example, based on a somewhat limited investigation using

Maple, we have the following result.

Conjecture 1. Suppose x = p1p2p3 with 2 < p1 < p2 < p3. Then

G(x) =

{
G(x− 1) if p1p2 > p3,

G(x− 1) + 1 if p1p2 < p3.

Let N = {1, 2, · · · }. We can also examine the cardinality of the set

F(x) :=
{
n :
⌊x
n

⌋
is prime

}
.

This might more naturally be thought of as the cardinality of the subsequence (Fnk
)

created from the sequence (Fn)n≤x
n∈N

, Fn = bx/nc, where you retain n for which Fn
is prime and remove n for which Fn is not prime. For example, we have

F(10) = {2, 3, 4, 5},

whereas it is more natural to think of the sequence (for x = 10)

(Fnk
) = 5, 3, 2, 2.

Of course, the cardinalities are the same. The cardinality of F(x) (or of (Fnk
)) can

be obtained by substituting f(m) = 1P(m) into Equation (1) and using a recent

result from Zhai [25]. As is usual, 1P(m) = 1 if m is prime and 0 otherwise. We

obtain the following result.

Theorem 4. Let F (x) := |F(x)|. Then

F (x) = Px+O
(
x1/2

)
,

where

P =

∞∑
n=1

1P(n)

n(n+ 1)
=
∑
p

1

p(p+ 1)
∼= 0.330230.
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We can use an alternate elementary approach, without exponential sums, to

arrive at a result with a slightly better lower bound. Specifically, we have the

following result.

Theorem 5. There exists calculable constants A1 and A2 such that for all x,

Px− A1
√
x

log x
≤ F (x) ≤ Px+A2

√
x.

The methodology of Theorem 4 can be utilised for all indicator functions since

these functions are all bounded by 1. For example, we state, but do not prove, the

following result.

Theorem 6. We have{
n :
⌊x
n

⌋
is a prime power

}
= Dx+O

(
x1/2

)
,

where

D =
∑
n=pk

1

n(n+ 1)
∼= 0.41382.

Throughout we use p, with or without subscript, to denote a prime number. The

notation f(x) = O(g(x)) or f(x) � g(x) is equivalent to the assertion that there

exists a constant c > 0 such that |f(x)| ≤ c|g(x)| for all x. As is usual, we denote

by Λ the von Mangoldt function.

2. Proof of Theorem 1

We have

G(x) =
∣∣∣{prime p =

⌊x
n

⌋
for some 1 ≤ n ≤ x

}∣∣∣ .
If
⌊
x
n

⌋
= p then

x

p+ 1
< n ≤ x

p

and such an n will exist if and only if
⌊
x
p

⌋
−
⌊

x
p+1

⌋
> 0. So

G(x) =
∑
p≤x

δ

(⌊
x

p

⌋
−
⌊

x

p+ 1

⌋
> 0

)
,

where

δp =

{
1 if

⌊
x
p

⌋
−
⌊

x
p+1

⌋
> 0,

0 otherwise.
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Let

G(x) = G1(x) +G2(x) +G3(x) +G4(x), (2)

where

G1 =
∑
p<b

δp, G2 =
∑

b≤p≤
√
x

δp, G3 =
∑

√
x<p≤x34/67

δp, G4 =
∑

x34/67<p≤x

δp,

and

b =

√
4x+ 1− 1

2
=
√
x+O(1).

For G1(x) the condition is always satisfied, since for p < b we have⌊
x

p

⌋
−
⌊

x

p+ 1

⌋
>
x

p
− x

p+ 1
− 1 =

x

p(p+ 1)
− 1 > 0.

So

G1(x) =
∑
p<b

1 = π(
√
x) +O(1) =

2
√
x

log x
+O

( √
x

(log x)2

)
. (3)

Trivially, we have that

G2(x) = O(1). (4)

Next, we estimate G4(x). If p > x34/67 then p =
⌊
x
n

⌋
for some n ≤ x33/67. Since

there can be at most x33/67 values for n we have

G4(x) = O
(
x33/67

)
. (5)

For G3(x) (and G4(x)) p is large enough that
⌊
x
p

⌋
−
⌊

x
p+1

⌋
can equal only 0 or 1.

So

G3(x) =
∑

√
x<p≤x34/67

δ

(⌊
x

p

⌋
−
⌊

x

p+ 1

⌋
> 0

)
=

∑
√
x<p≤x34/67

(⌊
x

p

⌋
−
⌊

x

p+ 1

⌋)
.

Then, using ψ(x) = x− bxc − 1
2 ,

G3(x) = x
∑

√
x<p≤x34/67

1

p(p+ 1)
+

∑
√
x<p≤x34/67

(
ψ

(
x

p+ 1

)
− ψ

(
x

p

))
. (6)

Using Riemann-Stieltjes integration and the Prime Number Theorem we have, for

the first sum,

x
∑

√
x<p≤x34/67

1

p(p+ 1)
= x

∫ x34/67

√
x

1

n(n+ 1)
d(π(n))

=
2
√
x

log x
+O

( √
x

(log x)2

)
. (7)

For the second sum of G3(x) we will use the following result([10, Theorem 6.25]).
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Lemma 1. Let δ ∈ [0, 1], x ≥ 1 be a large real number and R, R1 be positive integers

such that 1 ≤ R ≤ R1 ≤ 2R ≤ x2/3. Then, for all ε ∈ (0, 12 ],

x−ε
∑

R≤n≤R1

Λ(n)ψ

(
x

n+ δ

)
�
(
x2R33

)1/38
+
(
x2R19

)1/24 (
x3R2

)1/9
+
(
x3R−1

)1/6
+R5/6.

Returning to the second sum of G3(x) and using the Lemma we have

∑
√
x<p≤x34/67

(
ψ

(
x

p+ 1

)
− ψ

(
x

p

))
≤

∣∣∣∣∣∣
∑

√
x<p≤x34/67

ψ

(
x

p+ 1

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

√
x<p≤x34/67

ψ

(
x

p

)∣∣∣∣∣∣ .
We now bound the sum involving ψ(xp ). The calculations for the sum involving

ψ( x
p+1 ) is virtually identical. Let m ∼ N denote the inequalities N < m ≤ 2N . We

have

∑
√
x<p≤x34/67

ψ

(
x

p

)
� max√

x<N≤x34/67

∣∣∣∣∣∣
∑
p∼N

ψ

(
x

p

)∣∣∣∣∣∣ log x.

Next, using Abel summation,∣∣∣∣∣∣
∑
p∼N

ψ

(
x

p

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
p∼N

(
1

log p
× ψ

(
x

p
log p

))∣∣∣∣∣∣
≤ 2

logN
max

N≤N2≤N1

∣∣∣∣∣∣
∑

N<p≤N2

ψ

(
x

p

)
log p+ 1p(N)ψ

( x
N

logN
)∣∣∣∣∣∣

≤ 2

logN
max

N≤N2≤N1


∣∣∣∣∣∣
∑

N<n≤N2

Λ(n)ψ
(x
n

)∣∣∣∣∣∣+ |R(N)|+ logN

 ,

where

|R(N)| ≤


 ∑
√
N<p≤

√
N2

log p


 ∑

2≤a≤ log N2
log p

1


 < 2

√
N.

Using Lemma 1 with N1 = N2 = x34/67 and N =
√
x we obtain∑

√
x<p≤x34/67

ψ

(
x

p

)
� x

1256
2546+ε. (8)
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Substituting Equations (7) and (8) into Equation (6) and we see that

G3(x) =
2
√
x

log x
+

( √
x

(log x)2

)
,

and substituting this equation and Equations (3), (4) and (5) into Equation (2)

completes the proof.

3. Proof of Theorem 2

Fix a prime x not equal to 3. Suppose further that p ∈ G(x) but p 6= x. So for some

n we have bx/nc = p. As x is a prime we have x = np+ u where 1 ≤ u ≤ n− 1. So

x− 1 = np+ u− 1 from which⌊
x− 1

n

⌋
=

⌊
np+ u− 1

n

⌋
=

⌊
p+

u− 1

n

⌋
= p.

Thus p ∈ G(x− 1).

Conversely, suppose p ∈ G(x − 1). So b(x− 1)/nc = p for some n. So x − 1 =

np+ u where 0 ≤ u ≤ n− 1. But u 6= n− 1, for then x = np+ n = n(p+ 1), which

contradicts the supposition that x is prime. Thus x−1 = np+u with 0 ≤ u ≤ n−2,

and then ⌊x
n

⌋
=

⌊
np+ u+ 1

n

⌋
=

⌊
p+

u+ 1

n

⌋
= p.

Therefore p ∈ G(x).

We conclude that there is a one-to-one correspondence between an p 6= x ∈ G(x)

and p 6= x ∈ G(x − 1). Noting that we have x ∈ G(x) but x 6∈ G(x − 1) concludes

the proof.

4. Proof of Theorem 3

We have x = pq with p, q odd primes, not necessarily distinct. Without loss of

generality assume p ≤ q.
Case 1: Suppose that r ∈ G(x) with r 6= p, q. So x = nr+u with 0 ≤ u ≤ n− 1.

But if u = 0 then x = nr which is impossible since r 6= p, q. So 1 ≤ u ≤ n− 1 and

thus ⌊
x− 1

n

⌋
=

⌊
nr + u− 1

n

⌋
=

⌊
r +

u− 1

n

⌋
= r.

So r ∈ G(x). Conversely, suppose r ∈ G(x−1). So x−1 = nr+u with 0 ≤ u ≤ n−1.

But if u = n− 1 then x = nr+n− 1 + 1 = (n+ 1)r which is again impossible since
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r 6= p, q. So 0 ≤ u ≤ n− 2 and then⌊x
n

⌋
=

⌊
nr + u+ 1

n

⌋
=

⌊
r +

u+ 1

n

⌋
= r.

So r ∈ G(x− 1).

Case 2: Suppose that r ∈ G(x) with r = p = q. Since r = bx/rc we have

r ∈ G(x). But ⌊
x− 1

r

⌋
=

⌊
r − 1

r

⌋
= r − 1

and ⌊
x− 1

r − 1

⌋
=

⌊
r2 − 1

r − 1

⌋
= r + 1.

So r 6∈ G(x− 1).

Case 3: Suppose that r ∈ G(x) with r = p 6= q or r = q 6= p. Recall that p ≤ q.

It is clear that p ∈ G(x) and q ∈ G(x). Then⌊
x− 1

q − 1

⌋
=

⌊
pq − 1

q − 1

⌋
=

⌊
p+

p− 1

q − 1

⌋
= p,

so p ∈ G(x− 1). But⌊
x− 1

p

⌋
=

⌊
pq − 1

p

⌋
=

⌊
q − 1

p

⌋
= q − 1,

and ⌊
x− 1

p− 1

⌋
=

⌊
pq − 1

p− 1

⌋
=

⌊
q +

q − 1

p− 1

⌋
> q.

So q 6∈ G(x− 1).

Reviewing the three cases, we see that G(x) = G(x − 1) + 1, which proves the

theorem.

5. Proof of Theorem 4

We have

F (x) =
∑
n≤x

1P

(⌊x
n

⌋)
.

We will require the following result ([25, Theorem 1]).

Lemma 2. Let f be a complex-valued arithmetic function with f(n)� nα(log n)θ

for some α ∈ [0, 1) and θ ≥ 0. Then∑
n6x

f (bx/nc) = x

∞∑
n=1

f(n)

n(n+ 1)
+O

(
x

1
2 (α+1)(log x)θ

)
.
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Using this lemma with α = 0 and θ = 0 we have

F (x) = Px+O
(
x1/2

)
,

where

P =

∞∑
n=1

1P(n)

n(n+ 1)
=
∑
p

1

p(p+ 1)
∼= 0.330230,

completing the proof.

6. Proof of Theorem 5

Let P be the set of (positive) primes and P be the set consisting of 1 and the

positive composite numbers. We create upper and lower bounds for F (x) from the

set C(x) := {n : 1 ≤ n ≤ x}. Note that F(x) = {n ∈ C(x) : bx/nc is prime}. For

the upper bound we truncate the process by removing from C(x) only those n such

that bx/nc is a non-prime less than or equal to
√
x. In total we remove∑

c∈P
c≤
√
x

(⌊x
c

⌋
−
⌊

x

c+ 1

⌋)
>
∑
c∈P
c≤
√
x

(
x

c(c+ 1)
− 1

)

values of n.

So

F (x) < x−
∑
c∈P
c≤
√
x

(
x

c(c+ 1)
− 1

)

= x−
∑
c∈P
c≤
√
x

x

c(c+ 1)
+
∑
c∈P
c≤
√
x

1

= x− x

∑
c≤
√
x

1

c(c+ 1)
−
∑
c∈P
c≤
√
x

1

c(c+ 1)

+
√
x− π(

√
x)

= x− x
√
x√

x+ 1
+ x

∑
c∈P
c≤
√
x

1

c(c+ 1)
+O

(√
x
)

=
x√
x+ 1

+ x
∑
p

1

p(p+ 1)
− x

∑
p>
√
x

1

p(p+ 1)
+O

(√
x
)
.

Then ∑
p>
√
x

1

p(p+ 1)
≤
∑
n>
√
x

1

n(n+ 1)
= O

(
1√
x

)
,
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and so

F (x) ≤ Px+O
(√
x
)
. (9)

For the lower bound we add up the number of n for which bx/nc is a prime less than

or equal to
√
x. Then, using π(m) = m

logm + O
(

m
(logm)2

)
and Riemann-Stieltjes

integration,

F (x) =
∑
c∈P
c≤
√
x

(⌊x
c

⌋
−
⌊

x

c+ 1

⌋)
≥
∑
c∈P
c≤
√
x

(
x

c(c+ 1)
+ 1

)

= x
∑
c∈P
c≤
√
x

1

c(c+ 1)
+
∑
c∈P
c≤
√
x

1 = x

P − ∑
p>
√
x

1

p(p+ 1)

+
∑
c∈P
c≤
√
x

1

= Px− x
∑
p>
√
x

1

p(p+ 1)
+O

( √
x

log x

)
= Px+O

( √
x

log x

)
,

completing the proof.
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