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Abstract

We prove a new immanantal formula for the external path length EPL(Tn) of a Fibonacci tree
Tn, and we use this formula to prove the new binomial identity EPL(Tn) =

∑bn
2
c

i=0

(
n−i
i

)
(n− 2i− 1).

1 Introduction

The external path length EPL(T ) of a binary tree T is defined so that

EPL(T ) =
∑

λ is the level
of an external node

λ.

The Fibonacci tree Tn of order n ∈ N is defined inductively as follows: for n ∈ {1, 2}, Tn consists of a
single root, and for n ≥ 3, the left subtree of Tn is Tn−1, and the right subtree of Tn is Tn−2. In this
paper, we prove some new formulas for the external path length of a Fibonacci tree.

Letting n ≥ 3, it is easily seen that the external path length EPL(Tn) of Tn is equal to the convolution∑n−3
k=0 Fk+1Fn−k given in the OEIS sequence A067331 [2]. Interestingly, this integer sequence is also

related to tilings of “triangular strips” with triangles as indicated in [1]. Since the OEIS sequence
A067331 is related to combinatorial objects such as Fibonacci trees and triangular tilings, it seems
natural to consider other combinatorial properties associated with this sequence. In particular, we show
how the external path length of a Fibonacci tree may be expressed in a natural way using a class of
hook immanants.

The immanant of a matrix A of order n corresponding to the hook partition (k, 1n−k) ` n is denoted
by dk. We refer to the hook immanant dn−1 as the penultimate immanant. In Section 2, we prove that:

EPL(Tn) = dn−1



1 1 0 0 · · · 0

1 1 1 0
. . . 0

0 1 1 1
. . . 0

0 0 1 1
. . . 0

... . . . . . . . . . . . . 1
0 0 0 0 1 1


n×n

. (1.1)

We discovered this elegant formula using the OEIS [2]. We prove (1.1) using elementary character
theory, and our proof of (1.1) may be reformulated in a natural way using border-strip tableaux. This
provides another combinatorial property associated with the external path length of a Fibonacci tree.

The equality given in (1.1) is interesting because (1.1) suggests an unexpected representation-
theoretic interpretation of the external path length of a Fibonacci tree. In particular, from (1.1),
we have that EPL(Tn) may be expressed in a simple and unexpected way as a character sum as follows:

EPL(Tn) =
∑
σ∈Sn

∀i |σi−i|≤1

χ(n−1,1)(σ). (1.2)
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We use (1.2) to construct an unexpected and elegant representation-theoretic proof of the following
new binomial identity:

EPL(Tn) =
bn
2
c∑

i=0

(
n− i
i

)
(n− 2i− 1). (1.3)

In Section 1.1, we briefly review basic terminology and notation related to immanants. In Section 2,
we prove a recursive formula for the penultimate immanant of an arbitrary tridiagonal matrix with
constant diagonals, and we use this recursive formula to prove (1.1). In Section 3, we present a proof of
the identity given in (1.3).

1.1 The penultimate immanant

Letting λ be a partition of n ∈ N, and letting χλ denote the corresponding irreducible representation-
theoretic character of Sn, the immanant of an n×n matrix A = (ai,j)n×n corresponding to the partition
λ is defined as follows:

Immλ(A) =
∑
σ∈Sn

χλ(σ)a1,σ1a2,σ2 · · · an,σn .

For σ ∈ Sn, let cycle(σ) ` n denote the cycle type of σ. We thus have that:

Immλ(A) =
∑
σ∈Sn

χλcycle(σ)a1,σ1a2,σ2 · · · an,σn . (1.4)

Let λ ` n and ρ ` n. By the Murnaghan-Nakayama rule, we have that

χλρ =
∑
T

(−1)ht(T )

where the sum is over all border-strip tableaux of shape λ and content ρ, and ht(T ) denotes the sum
of the heights of the border strips in T . The height of a border strip is −1 plus the number of rows it
touches. A border-strip tableau of shape λ is a tableau with weakly increasing rows and columns such
that: for all indices i, the arrangement of cells labeled i forms a contiguous border strip.

Recall that the penultimate immanant of an n× n matrix A is the immanant of A corresponding to
the partition (n− 1, 1). We use the notation PenImm to denote the penultimate immanant. Irreducible
characters of the form χ

(n−1,1)
ρ may be evaluated in a natural way using the Murnaghan-Nakayama rule.

Example 1.1. We adopt the convention whereby the first entry of a partition is illustrated at the bottom
of the corresponding diagram. Letting ρ = (3, 2, 2, 1, 1), the border-strip tableaux corresponding to the
character χ(8,1)

ρ are given below:

1
1 1 2 2 3 3 4 5

5
1 1 1 2 2 3 3 4

4
1 1 1 2 2 3 3 5

We thus have that χ(8,1)
ρ = (−1)1 + (−1)0 + (−1)0 = 1.

Using the Murnaghan-Nakayama rule, it is easily verified that:

Claim 1.2. For σ ∈ Sn, χ(n−1,1)
cycle(σ) = (# of fixed points of σ)− 1.
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2 The external path length of a Fibonacci tree

The n×n tridiagonal matrix with α’s along the subdiagonal, β’s along the main diagonal, and γ’s along
the superdiagonal is henceforward denoted as tridα,β,γn , or simply tridn for the sake of convenience.

Lemma 2.1. The sequence
(
dn−1

(
tridα,β,γn

)
: n ≥ 3

)
is generated by the linear recurrence given by

(2β, 2αγ − β2,−2αβγ,−(αγ)2).

Proof. Write tridα,β,γn = tridn = (ai,j)n×n. From (1.4), we have that:

dn−1(tridn) =
∑
σ∈Sn

χ
(n−1,1)
cycle(σ)a1,σ1a2,σ2 · · · an,σn . (2.1)

Consider the expression perm(tridn). It is clear that if the product

a1,σ1a2,σ2 · · · an,σn
given in (2.1) does not vanish, then σ is such that |σi − i| ≤ 1 for all indices i. Let Rn denote the
collection of all permutations in Sn of this form. From (2.1), we thus have that:

dn−1(tridn) =
∑
σ∈Rn

χ
(n−1,1)
cycle(σ)a1,σ1a2,σ2 · · · an−1,σn−1an,σn . (2.2)

If the expression an,σn does not vanish, then σn ∈ {n− 1, n}. From (2.2), we thus have that
dn−1(tridn) is equal to:

∑
σ∈Rn
σn=n−1

χ
(n−1,1)
cycle(σ)a1,σ1a2,σ2 · · · an−1,σn−1an,n−1+

∑
σ∈Rn
σn=n

χ
(n−1,1)
cycle(σ)a1,σ1a2,σ2 · · · an−1,σn−1an,n.

Now observe that given a permutation σ such that |σi − i| ≤ 1 for all indices i, each cycle of σ is of
length 1 or 2. Given a permutation σ in Rn such that σn = n− 1, we may thus deduce that (n− 1, n)
is a cycle of σ. Therefore, dn−1(tridn) is equal to:∑

σ∈Rn
σn=n−1
σn−1=n

χ
(n−1,1)
cycle(σ)a1,σ1a2,σ2 · · · an−2,σn−2an−1,nan,n−1+

∑
σ∈Rn
σn=n

χ
(n−1,1)
cycle(σ)a1,σ1a2,σ2 · · · an−1,σn−1an,n.

Given partitions µ and µ′, we define the direct sum

µ⊕ µ′ = sort (µ · µ′)

of µ and µ′ as the partition obtained by sorting the parts of µ and µ′. Now rewrite the above expression
for dn−1(tridn) as follows.

αγ
∑
σ∈Rn
σn=n−1
σn−1=n

χ
(n−1,1)
cycle(σ)a1,σ1a2,σ2 · · · an−2,σn−2 + β

∑
σ∈Rn
σn=n

χ
(n−1,1)
cycle(σ)a1,σ1a2,σ2 · · · an−1,σn−1
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= αγ
∑

ρ∈Rn−2

χ
(n−1,1)
cycle(ρ)⊕(2)a1,ρ1a2,ρ2 · · · an−2,ρn−2 + β

∑
ρ∈Rn−1

χ
(n−1,1)
cycle(ρ)⊕(1)a1,ρ1a2,ρ2 · · · an−1,ρn−1

= αγ
∑

ρ∈Rn−2

χ
(n−1,1)
cycle(ρ)⊕(2)a1,ρ1a2,ρ2 · · · an−2,ρn−2 + β

∑
ρ∈Rn−1

(
χ
(n−1,1)
cycle(ρ)⊕(1) − 2χ

(n−2,1)
cycle(ρ)

)
a1,ρ1a2,ρ2 · · · an−1,ρn−1+

2β · PenImm(tridn−1)

= αγ
∑

ρ∈Rn−2

χ
(n−1,1)
cycle(ρ)⊕(2)a1,ρ1a2,ρ2 · · · an−2,ρn−2+

αβγ
∑

ρ∈Rn−3

(
χ
(n−1,1)
cycle(ρ)⊕(2,1) − 2χ

(n−2,1)
cycle(ρ)⊕(2)

)
a1,ρ1a2,ρ2 · · · an−3,ρn−3+

β2
∑

ρ∈Rn−2

(
χ
(n−1,1)
cycle(ρ)⊕(1,1) − 2χ

(n−2,1)
cycle(ρ)⊕(1)

)
a1,ρ1a2,ρ2 · · · an−2,ρn−2 + 2β · PenImm(tridn−1)

=
∑

ρ∈Rn−3

(
αβγχ

(n−1,1)
cycle(ρ)⊕(2,1) − 2αβγχ

(n−2,1)
cycle(ρ)⊕(2)

)
a1,ρ1a2,ρ2 · · · an−3,ρn−3+∑

ρ∈Rn−2

(
β2χ

(n−1,1)
cycle(ρ)⊕(1,1) − 2β2χ

(n−2,1)
cycle(ρ)⊕(1) + αγχ

(n−1,1)
cycle(ρ)⊕(2) − (2αγ − β2)χ

(n−3,1)
cycle(ρ)

)
a1,ρ1a2,ρ2 · · · an−2,ρn−2+

(2αγ − β2) · PenImm(tridn−2) + 2β · PenImm(tridn−1)

=
∑

ρ∈Rn−4

(
αβ2γχ

(n−1,1)
cycle(ρ)⊕(2,1,1) − 2αβ2γχ

(n−2,1)
cycle(ρ)⊕(2,1) + (αγ)2χ

(n−1,1)
cycle(ρ)⊕(2,2)−

αγ(2αγ − β2)χ
(n−3,1)
cycle(ρ)⊕(2) + (αγ)2χ

(n−5,1)
cycle(ρ)

)
a1,ρ1a2,ρ2 · · · an−4,ρn−4+∑

ρ∈Rn−3

(
β3χ

(n−1,1)
cycle(ρ)⊕(1,1,1) − 2β3χ

(n−2,1)
cycle(ρ)⊕(1,1) + αβγχ

(n−1,1)
cycle(ρ)⊕(2,1) − β(2αγ − β

2)χ
(n−3,1)
cycle(ρ)⊕(1)+

αβγχ
(n−1,1)
cycle(ρ)⊕(2,1) − 2αβγχ

(n−2,1)
cycle(ρ)⊕(2) + 2αβγχ

(n−4,1)
cycle(ρ)

)
a1,ρ1a2,ρ2 · · · an−3,ρn−3+

2β · PenImm(tridn−1) +
(
2αγ − β2

)
PenImm(tridn−2)−

2αβγ · PenImm(tridn−3)− (αγ)2PenImm(tridn−4).

Let ρ ∈ Rn−4, and suppose that ρ has exactly x fixed points. By the above lemma, we thus have
that the character coefficient of the first sum above is equal to:

αβ2γ(x+ 1)− 2αβ2γx+ (αγ)2(x− 1)−

αγ(2αγ − β2)(x− 1) + (αγ)2(x− 1) = 0.

Let ρ ∈ Rn−3, and suppose that ρ has exactly y fixed points. By the above lemma, we thus have
that the character coefficient of the latter sum above is equal to:

β3(y + 2)− 2β3(y + 1) + αβγy − β(2αγ − β2)y + αβγy−

2αβγ(y − 1) + 2αβγ(y − 1) = 0,

thus completing our proof.

Let a(n) = A067331(n) denote the nth entry in the OEIS sequence A067331, with: A067331(n) =∑n
k=0 Fk+1Fn+3−k. As indicated in [2], a(n) is equal to the external path length of the Fibonacci tree of
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order n + 3. The external path length of a tree is the sum of the levels of its leaves. It is easily seen
that:

a(n) = 2a(n− 1) + a(n− 2)− 2a(n− 3)− a(n− 4)

with a(0) = 2, a(1) = 5, a(2) = 12, a(3) = 25. By Lemma 2.1, the penultimate immanant of tridn =
trid1,1,1

n is equal to

PenImm(tridn) = 2 · PenImm(tridn−1) + PenImm(tridn−2)−

2 · PenImm(tridn−3)− PenImm(tridn−4)

with PenImm(trid3) = 2, PenImm(trid4) = 5, PenImm(trid5) = 12, and PenImm(trid6) = 25. We thus
have that

A067331(n) = PenImm(trid1,1,1
n+3 )

for all n ∈ N0, and we thus have that

EPL(Tn) = PenImm(trid1,1,1
n )

for n ≥ 3 as desired.

3 A representation-theoretic proof of a new binomial identity

In this section, we prove (1.3) using (1.2). From (1.1) we have that

EPL(Tn) =
∑
σ

χ(n−1,1)(σ),

where the above sum is as given in (1.2), i.e. the above sum is over all permutations σ in Sn such that
|σi − i| ≤ 1 for all indices i. It is easily seen that given a permutation σ of this form, the cycle type of
σ is of the form (2i, 1j) ` n. Conversely, suppose that µ ` n is a partition of the form (2i, 1j). It seems
natural to ask: how many permutations σ satisfying ∀i |σi − i| ≤ 1 are of cycle type µ? Observe that
a 2-cycle of a permutation σ of this form must be of the form (j, j + 1). But then it is easily seen that
that there are precisely (

`(µ)

(µ∗)2

)
permutations of this form, letting µ∗ denote the conjugate of µ, thus proving (1.3). Note that we are
using the standard convention whereby λi = 0 for an arbitrary partition λ and an arbitrary index i
satisfying i > `(λ). So, for a partition µ satisfying `(µ∗) ≤ 2, we have that (µ∗)2 is precisely the number
of entries of µ which are equal to 2.

It now seems natural to make use of Claim 1.2. In particular, from (1.3) together with Claim 1.2,
we thus arrive at the following beautiful combinatorial formula:

EPL(Tn) =
∑
µ`n

`(µ∗)≤2

(
`(µ)

(µ∗)2

)
(`(µ)− (µ∗)2 − 1) (3.1)

The elegant binomial identity

EPL(Tn) =
n−3∑
i=0

Fi+1Fn−i =

bn
2
c∑

i=0

(
n− i
i

)
(n− 2i− 1)
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follows immediately from (3.1) by rewriting the sum given in (3.1) as a sum over the possible number
of 2’s in a partition µ ` n such that diag(µ) consists of at most 2 columns.

We remark that our technique which was used to prove the binomial identity

EPL(Tn) =
bn
2
c∑

i=0

(
n− i
i

)
(n− 2i− 1)

may be applied to immanants more generally. In particular, we have that:

Immλ(trid1,1,1
n ) =

∑
µ`n

`(µ∗)≤2

(
`(µ)

(µ∗)2

)
χλµ. (3.2)

Letting λ = (1n) with respect to (3.2), we thus arrive at the following known binomial identity:

bn
2
c∑

i=0

(
n− i
i

)
(−1)i = 1

2

(
(−1)b

n
3
c + (−1)b

n+1
3
c
)
.

Letting λ = (n) with respect to (3.2), we thus arrive at the following well-known binomial identity:

Fn+1 =

bn
2
c∑

i=0

(
n− i
i

)
.

4 Conclusion

We currently leave it as an open problem to construct a bijective, as opposed to recursive, proof of (1.1),
and we leave it as an open problem to construct a formula for evaluating an arbitrary hook immanant
of an arbitrary tridiagonal matrix.
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