[go: up one dir, main page]

login
A066534
Total number of walks with length > 0 in the Hasse diagram of a Boolean algebra of order n.
10
0, 1, 6, 30, 152, 840, 5232, 37072, 297600, 2680704, 26812160, 294945024, 3539364864, 46011796480, 644165265408, 9662479226880, 154599668154368, 2628194359738368, 47307498477649920, 898842471080329216
OFFSET
0,3
COMMENTS
Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 1 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
LINKS
Eric Weisstein, Walk
Eric Weisstein, Boolean Algebra
Eric Weisstein, Hasse Diagram
FORMULA
a(n) = n!*Sum_{i+j<n, i, j >= 0} 1/(i!*j!). - Benoit Cloitre, Nov 01 2002
E.g.f.: x*exp(2*x)/(1-x). a(n) = n*(a(n-1)+2^(n-1)). - Vladeta Jovovic, Oct 29 2003
a(n) = Sum_{k=0..n-1} (n! / k!) * 2^k = Sum_{k=0..n-1} P(n, n-k) * 2^k = n! * Sum_{k=0..n-1} 2^k / k! = Sum_{k=1..n} P(n, k) * 2^(n-k) = sum of the n-th row of A090802 from column 1 on = A010842(n) - 2^n = n * A010842(n-1) = binomial transform of A007526 - Ross La Haye, Sep 15 2004
E.g.f.: x/U(0) where U(k) = 1 - 2*x/(2 - 4/(2 + (k+1)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 18 2012
Conjecture: a(n) + (-n-4)*a(n-1) + 4*(n)*a(n-2) + 4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Dec 04 2012
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
Mathar's conjectural third-order recurrence above is an easy consequence of Jovovic's first-order recurrence a(n) = n*(a(n-1) + 2^(n-1)). - Peter Bala, Sep 23 2013
EXAMPLE
a(2) = 6 because (2! / 0! * 2^0) + (2! / 1! * 2^1) = 6
MATHEMATICA
a[ n_ ] := n!Sum[ 2^k/k!, {k, 0, n-1} ]
Table[n*Gamma[n, 2]*E^2, {n, 0, 19}] (* Ross La Haye, Oct 09 2005 *)
CROSSREFS
KEYWORD
easy,nonn,nice,walk
AUTHOR
Peter Bertok (peter(AT)bertok.com), Jan 07 2002
EXTENSIONS
Edited by Dean Hickerson, Jan 12 2002
Entry revised by Ross La Haye, Aug 18 2006
STATUS
approved