Representing a sequence as $[x^n] \, G(x)^n$

Peter Bala, August 2015

Let $a(n)$ be an integer sequence with $a(0) = 1$. We show that there exists a formal power series $G(x)$, having rational coefficients, such that $a(n) = [x^n] G(x)^n$ for $n \geq 0$. This result can be found (in a slightly disguised form) in [Stanley, Enumerative Combinatorics, Vol. 2 - see Exercise 5.56 (a), p. 98 and its solutions on pp. 146-147].

- -

We will need the following result, which is the particular case $k = 0$ of part (ii) of 2.1 Theorem in [1].

Proposition 1. Let $G(t)$ be any element of $\mathbb{C}[[t]]$. Then the equation $f(x) = xG(f(x))$ has a unique solution in $\mathbb{C}[[x]]$ and

$$
[x^n] \frac{1}{1 - xG'(f(x))} = [t^n]G(t)^n.
$$
 (1)

 \Box

Proposition 2. Let $a(n)$ be an integer sequence with $a(0) = 1$. Then there exists a formal power series $G(x)$ with rational coefficients such that

$$
a(n) = [x^n] G(x)^n \text{ for all } n \ge 0.
$$

Proof. Define the power series $f(x)$ by

$$
f(x) = x \exp\left(\sum_{n\geq 1} a(n) \frac{x^n}{n}\right).
$$
 (2)

Clearly, the expansion of $f(x)$ will be a power series in x with rational coefficients.

Logarithmically differentiating (2) gives

$$
\frac{x f'(x)}{f(x)} = \sum_{n \ge 0} a_n x^n \tag{3}
$$

so that

$$
a(n) = [x^n] \frac{x f'(x)}{f(x)}.
$$
 (4)

Define a power series $G(x)$ by

$$
G(x) = \frac{x}{\bar{f}(x)},\tag{5}
$$

where $\bar{f}(x)$ denotes the compositional inverse of $f(x)$. The function $G(x)$ when expanded as a power series in x will have rational coefficients.

It follows from (5) that $f(x)$ satisfies the functional equation

$$
f(x) = xG(f(x)).
$$
\n(6)

Thus $G(x)$ and $f(x)$ satisfy the conditions of Proposition 1. In order to apply the proposition we need to calculate $1/(1 - xG'(f(x)))$.

Differentiating (6) with respect to x gives

$$
f'(x) = xG'(f(x))f'(x) + G(f(x)).
$$

Hence

$$
1 - xG'(f(x)) = \frac{G(f(x))}{f'(x)}
$$

$$
= \frac{f(x)}{xf'(x)},
$$

by (6).

Thus

$$
\frac{1}{1 - xG'(f(x))} = \frac{x f'(x)}{f(x)}.
$$
 (7)

Using (7), Proposition 1 yields

$$
[tn]G(t)n = [xn] \frac{x f'(x)}{f(x)}
$$

$$
= a(n),
$$

by (4). \Box

Remarks.

1) In Proposition 2, the power series $G(x)$ will be integral iff the power series $f(x)$ determined by (2) is integral.

2) The expansion of $G(x)$ begins

$$
G(x) = 1 + a(1)x + (a(2) - a(1)^{2}) \frac{x^{2}}{2!} + (2a(3) - 6a(1)a(2) + 4a(1)^{3}) \frac{x^{3}}{3!} + \cdots
$$

A simple induction argument shows that the n -th coefficient in this expansion is a polynomial in $a(1),...,a(n)$.

3) For $m \neq 0$ the power series $G_m(x) := \frac{1}{m} G(mx)$ also has the property that $a(n) = [x^n] G_m(x)^n$. The power series $G(x)$ defined by (5) is the unique power series having the properties $G(0) = 1$ and $a(n) = [x^n] G(x)^n$ for $n \ge 0$.

Example. Let P and Q be integers. The Lucas sequence of the second kind $V_n \equiv V_n(P,Q)$ is the integer sequence

$$
V_n = a^n + b^n,
$$

where

$$
a = \frac{1}{2} \left(P + \sqrt{D} \right)
$$

$$
b = \frac{1}{2} \left(P - \sqrt{D} \right)
$$

and

$$
D = P^2 - 4Q.
$$

Examples include the Lucas Numbers $V_n(1, -1) = A000032$, the Pell-Lucas numbers $V_n(2, -1) = A002203$ $V_n(2, -1) = A002203$ and the Jacobsthal-Lucas numbers $V_n(1, -2) =$ [A014551.](https://oeis.org/A014551)

A simple calculation gives

$$
f(x) := x \exp \left(\sum_{n \ge 1} V_n \frac{x^n}{n} \right).
$$

$$
= \frac{x}{1 - Px + Qx^2}.
$$

We then find

$$
G(x) := \frac{x}{\bar{f}(x)},
$$

=
$$
\frac{1 + Px + \sqrt{1 + 2Px + (P^2 - 4Q)x^2}}{2}.
$$

Hence, by Proposition 2

$$
V_n = [x^n] \left(\frac{1 + Px + \sqrt{1 + 2Px + (P^2 - 4Q)x^2}}{2} \right)^n \text{ for } n \ge 1.
$$

For instance, taking $P=1, Q=-1$ we have

Lucas(n) =
$$
[x^n]
$$
 $\left(\frac{1+x+\sqrt{1+2x+5x^2}}{2}\right)^n$ for $n \ge 1$.

REFERENCES

- [1] I. M. Gessel, [A Factorization for Formal Laurent Series and Lattice Path Enumeration,](http://people.brandeis.edu/~gessel/homepage/papers/factorization.pdf) J. of Combinatorial Theory, Series A 28, 321-337 (1980) online at http://people.brandeis.edu/~gessel/homepage/papers/factorization.pdf
- [2] Wikipedia, [Lucas Sequence](https://en.wikipedia.org/wiki/Lucas_sequence)