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Let a(n) be an integer sequence with a(0) = 1. We show that there exists a
formal power series G(x), having rational coe�cients, such that
a(n) = [xn] G(x)n for n ≥ 0. This result can be found (in a slightly disguised
form) in [ Stanley, Enumerative Combinatorics, Vol. 2 - see Exercise 5.56 (a),
p. 98 and its solutions on pp. 146-147 ].

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

We will need the following result, which is the particular case k = 0 of part (ii)
of 2.1 Theorem in [1].

Proposition 1. Let G(t) be any element of C[[t]]. Then the equation

f(x) = xG(f(x)) has a unique solution in C[[x]] and

[xn]
1

1− xG′(f(x))
= [tn]G(t)n. (1)

�

Proposition 2. Let a(n) be an integer sequence with a(0) = 1. Then there

exists a formal power series G(x) with rational coe�cients such that

a(n) = [xn]G(x)n for all n ≥ 0.

Proof. De�ne the power series f(x) by

f(x) = xexp

∑
n≥1

a(n)
xn

n

 . (2)

Clearly, the expansion of f(x) will be a power series in x with rational
coe�cients.

Logarithmically di�erentiating (2) gives

xf
′
(x)

f(x)
=
∑
n≥0

anx
n (3)

so that

a(n) = [xn]
xf

′
(x)

f(x)
. (4)

1



De�ne a power series G(x) by

G(x) =
x

f̄(x)
, (5)

where f̄(x) denotes the compositional inverse of f(x). The function G(x) when
expanded as a power series in x will have rational coe�cients.

It follows from (5) that f(x) satis�es the functional equation

f(x) = xG(f(x)). (6)

Thus G(x) and f(x) satisfy the conditions of Proposition 1. In order to apply
the proposition we need to calculate 1/(1− xG

′
(f(x))).

Di�erentiating (6) with respect to x gives

f
′
(x) = xG

′
(f(x))f

′
(x) + G(f(x)).

Hence

1− xG
′
(f(x)) =

G(f(x))

f ′(x)

=
f(x)

xf ′(x)
,

by (6).

Thus

1

1− xG′(f(x))
=

xf
′
(x)

f(x)
. (7)

Using (7), Proposition 1 yields

[tn]G(t)n = [xn]
xf

′
(x)

f(x)

= a(n),

by (4). �

Remarks.

1) In Proposition 2, the power series G(x) will be integral i� the power series
f(x) determined by (2) is integral.
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2) The expansion of G(x) begins

G(x) = 1 + a(1)x +
(
a(2)− a(1)2

) x2

2!
+
(
2a(3)− 6a(1)a(2) + 4a(1)3

) x3

3!
+ · · · .

A simple induction argument shows that the n-th coe�cient in this expansion
is a polynomial in a(1), ..., a(n).

3) For m 6= 0 the power series Gm(x) := 1
mG(mx) also has the property that

a(n) = [xn] Gm(x)n. The power series G(x) de�ned by (5) is the unique power
series having the properties G(0) = 1 and a(n) = [xn] G(x)n for n ≥ 0.

Example. Let P and Q be integers. The Lucas sequence of the second kind
Vn ≡ Vn(P,Q) is the integer sequence

Vn = an + bn,

where

a =
1

2

(
P +

√
D
)

b =
1

2

(
P −

√
D
)

and

D = P 2 − 4Q.

Examples include the Lucas Numbers Vn(1,−1) =A000032, the Pell-Lucas
numbers Vn(2,−1) = A002203 and the Jacobsthal-Lucas numbers Vn(1,−2) =
A014551.

A simple calculation gives

f(x) := xexp

∑
n≥1

Vn
xn

n

 .

=
x

1− Px + Qx2
.

We then �nd

G(x) :=
x

f̄(x)
,

=
1 + Px +

√
1 + 2Px + (P 2 − 4Q)x2

2
.
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https://oeis.org/A000032
https://oeis.org/A002203
https://oeis.org/A014551


Hence, by Proposition 2

Vn = [xn]

(
1 + Px +

√
1 + 2Px + (P 2 − 4Q)x2

2

)n

for n ≥ 1.

For instance, taking P = 1, Q = −1 we have

Lucas(n) = [xn]

(
1 + x +

√
1 + 2x + 5x2

2

)n

for n ≥ 1.
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