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Let N denote the set of nonnegative integers. If A = {a1, a2, . . . , am} is a set of
positive integers satisfying gcd(a1, a2, . . . , am) = 1, then

ha1, a2, . . . , ami =
(

mX
j=1

xjaj : xj ∈ N for each 1 ≤ j ≤ m

)

is the subset of N generated by A. For example,

ha, a+ 1, a+ 2, a+ 3, . . . , 2a− 1i = {0} ∪ {a, a+ 1, a+ 2, a+ 3, . . .}

and
h2, bi = {0, 2, 4, . . . , b− 3} ∪ {b− 1, b, b+ 1, b+ 2, b+ 3, . . .}

when b ≥ 3 is odd.
A numerical monoid S is a subset of N that is closed under addition, contains 0,

and has finite complement inN. (Most authors use the phrase “numerical semigroup”,
but semigroups by definition need not contain 0, hence the usage is puzzling.) The
Frobenius number f of S is the maximum element in the set N−S, and the genus
g of S is the cardinality of N− S. Therefore

f (ha, a+ 1, a+ 2, a+ 3, . . . , 2a− 1i) = a− 1, f (h2, bi) = b− 2,

g (ha, a+ 1, a+ 2, a+ 3, . . . , 2a− 1i) = a− 1, g (h2, bi) = (b− 1)/2
and, more generally [1],

f (ha, bi) = (a− 1)(b− 1)− 1, g (ha, bi) = (a− 1)(b− 1)/2

when gcd(a, b) = 1. It is known that f + 1 ≤ 2g always [2, 3]. Table 1 gives all
monoids S with 1 ≤ f ≤ 4 or 1 ≤ g ≤ 4.
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Table 1. Numerical Monoids with Small Frobenius Number or Genus
f = 1 f = 2 f = 3 f = 4 g = 1 g = 2 g = 3 g = 4
h2, 3i h3, 4, 5i h4, 5, 6, 7i h5, 6, 7, 8, 9i h2, 3i h3, 4, 5i h4, 5, 6, 7i h5, 6, 7, 8, 9i

h2, 5i h3, 5, 7i h2, 5i h3, 5, 7i h4, 6, 7, 9i
h3, 4i h3, 7, 8i
h2, 7i h4, 5, 7i

h4, 5, 6i
h3, 5i
h2, 9i

Define sequences [4, 5, 6, 7]

{Fn}∞n=1 = {1, 1, 2, 2, 5, 4, 11, 10, . . .},

{Gn}∞n=1 = {1, 2, 4, 7, 12, 23, 39, 67, . . .}
by

Fn = (the number of monoids S with f(S) = n) ,

Gn = (the number of monoids S with g(S) = n)

then Backelin [8] showed that

0 < liminf
n→∞

2−n/2Fn < limsup
n→∞

2−n/2Fn <∞,

1
2
(2.47) < lim

n→∞
n≡0mod 2

2−n/2Fn <
1
2
(3.3), 1√

2
(2.5) < lim

n→∞
n≡1mod 2

2−n/2Fn <
1√
2
(3.32)

and Bras-Amorós [5, 9, 10] conjectured that

lim
n→∞

Gn+1

Gn
= ϕ

where ϕ = (1 +
√
5)/2 = 1.6180339887... is the Golden mean. Tighter bounds are

needed for Fn asymptotics; it has not even been proved that Gn is increasing.
A monoid is irreducible if it cannot be written as the intersection of two monoids

properly containing it [11]. A monoid S is irreducible if and only if S is maximal
(with respect to set inclusion) in the collection of all monoids with Frobenius number
f(S). Irreducible monoids with odd f are the same as symmetric monoids (for
which f = 2g− 1 always); irreducible monoids with even f are the same as pseudo-
symmetric monoids (for which f = 2(g − 1) always). As an example, h3, 4i and
h2, 7i are the two symmetric monoids with Frobenius number 5; h4, 5, 7i is the unique
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pseudo-symmetric monoid with Frobenius number 6. Another characterization of
symmetry and pseudo-symmetry will be given shortly. Define [4, 12]

{Hn}∞n=1 = {1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 6, 2, 8, . . .}

by
Hn = (the number of irreducible monoids S with f(S) = n)

then Backelin [8] showed that

0 < liminf
n→∞

2−n/6Hn < limsup
n→∞

2−n/6Hn <∞,

1
2
(9.36) < lim

n→∞
n≡0mod 6

2−n/6Hn =
1√
2

lim
n→∞

n≡3mod 6
2−n/6Hn < c.

No finite value c (as an upper bound for Hn asymptotics) has been rigorously proved.

0.1. Sets without Closure. A numerical set S is a subset of N that contains
0 and has finite complement in N. The Frobenius number of S is, as before, the
maximum element in the set N− S. Nothing has been assumed about additivity so
far. Every numerical set S has an associated atom monoid A(S) defined by

A(S) = {n ∈ Z : n+ S ⊆ S} .

Clearly A(S) ⊆ S; also A(S) = S if and only if S is itself a numerical monoid. The
Frobenius number of A(S) is the same as the Frobenius number of S; thus there is
no possible ambiguity when speaking about f(S). Let

Nn = hn+ 1, n+ 2, n+ 3, . . . , 2n+ 1i = {0} ∪ {n+ 1, n+ 2, n+ 3, . . .}

which we already know has Frobenius number n. Given n, which sets S have A(S) =
Nn? Table 2 answers the question for 1 ≤ n ≤ 5. For brevity, we give only T , where
S = T ∪Nn is a disjoint union.

Table 2. Numerical Sets T ∪Nn with Atom Monoid Nn

n = 1 n = 2 n = 3 n = 4 n = 5
∅∗ ∅ ∅ ∅ ∅

{1} {1}∗ {1} {1}
{1, 2} {2} {2}

{1, 2} {1, 2}∗
{1, 3} {1, 3}∗
{1, 2, 3} {1, 4}

{2, 3}
{1, 2, 3}
{1, 2, 4}
{1, 2, 3, 4}
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Define [13]
{Pn}∞n=1 = {1, 2, 3, 6, 10, 20, 37, 74, . . .}

by
Pn = (the number of sets S with A(S) = Nn)

then Marzuola & Miller [14] showed that

lim
n→∞

Pn

2n−1
≈ 0.484451± 0.005.

Also, a numerical set S with Frobenius number n satisfying

x ∈ S if and only if n− x /∈ S

is symmetric if n is odd and pseudo-symmetric if n is even and n/2 /∈ S (we
agree to exclude x = n/2 from consideration). The symmetric cases in Table 2 are
marked by ∗. Define [13]

{Qk}∞k=1 = {1, 1, 2, 3, 6, 10, 20, 37, 73, . . .}

by
Qk = (the number of symmetric sets S with A(S) = N2k−1)

then [14]

lim
k→∞

Qk

2k−1
≈ 0.230653± 0.006.

It is interesting theQk+2 is the number of additive 2-bases for {0, 1, 2, . . . , k}, meaning
sets Σ that satisfy

Σ ⊆ {0, 1, 2, . . . , k} ⊆ Σ+ Σ.

The asymptotics for the corresponding “anti-atom” problem for pseudo-symmetric
sets are identical to the preceding.

Addendum. , Work continued on the growth of G(n) [15, 16], culminating with
a theorem by Zhai [17]:

lim
n→∞

G(n)

ϕn
exists and is finite (and is at least 3.78).

No similar progress can be reported for F (n).
Amore sums than differences (MSTD) set is a finite subset S of N satisfying

|S + S| > |S − S| . The probability that a uniform random subset of {0, 1, ..., n}
is an MSTD set is provably > 0.000428 and conjecturally ≈ 0.00045, as n → ∞.
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Underlying solution techniques [18] resemble those in [16]; the problem itself reminds
us of [19].
Given gcd(a, b, c) = 1, let f̃(a, b, c) = f(ha, b, ci)+a+b+c. Ustinov [20, 21] proved

that, on average, f̃(a, b, c) is asymptotic to (8/π)
√
abc. The following probability

density function

p(t) =

⎧⎪⎪⎨⎪⎪⎩
12

π

µ
t√
3
−
√
4− t2

¶
for
√
3 ≤ t ≤ 2

12

π2

∙√
3 t arccos

µ
t+ 3

√
t2 − 4

4
√
t2 − 3

¶
+
3

2

√
t2 − 4 ln

µ
t2 − 4
t2 − 3

¶¸
for t > 2

describes more fully the behavior of f̃(a, b, c)/
√
abc as max{a, b, c}→∞; in particu-

lar, the distribution has a sharp peak at mode 2 and has mean

∞Z
√
3

t p(t)dt =
8

π
.

In words, f̃(a, b, c) is the largest positive integer not representable as xa + yb + zc
for positive coefficients x, y, z. This is more convenient for the analysis — based
on continued fractions (Porter’s constant [22] appears in [20]) — leading to proof of
such limiting results. Let g̃(a, b, c) denote the cardinality of all positive integers not
representable as xa + yb + zc, x > 0, y > 0, z > 0. One of Ustinov’s students
calculated the average normalized genus to be 8/π − 64/(5π2); we await the proof.
Also, what can be said about rates of growth of Fn,k and Gn,k, the counts of monoids
when the number of generators is fixed to be k?
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