[go: up one dir, main page]

login
A066060
Number of nilpotent groups of order n.
3
1, 1, 1, 2, 1, 1, 1, 5, 2, 1, 1, 2, 1, 1, 1, 14, 1, 2, 1, 2, 1, 1, 1, 5, 2, 1, 5, 2, 1, 1, 1, 51, 1, 1, 1, 4, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 14, 2, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 2, 1, 1, 2, 267, 1, 1, 1, 2, 1, 1, 1, 10, 1, 1, 2, 2, 1, 1, 1, 14, 15, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 51, 1, 2, 2, 4, 1
OFFSET
1,4
COMMENTS
Multiplicative with a(p^m) equal to the number of groups of order p^m.
LINKS
T. D. Noe and Amiram Eldar, Table of n, a(n) for n = 1..2047 (terms 1..2015 from T. D. Noe)
John Renze, Nilpotent Group.
MATHEMATICA
terms = 101; fgc = FiniteGroupCount[Range[terms]]; a[1] = 1; a[n_ /; PrimePowerQ[n] && 1 < n <= terms] := a[n] = fgc[[n]]; a[n_ /; 1 < n <= terms] := a[n] = Times @@ (a[#[[1]]^#[[2]]]& /@ FactorInteger[n]); Array[a, terms] (* Jean-François Alcover, Oct 03 2017 *)
CROSSREFS
KEYWORD
nonn,nice,mult,easy
AUTHOR
Reiner Martin, Dec 29 2001
STATUS
approved