[go: up one dir, main page]

login
A063850
Say what you see in previous term, reporting total number for each digit encountered.
24
1, 11, 21, 1211, 3112, 132112, 311322, 232122, 421311, 14123113, 41141223, 24312213, 32142321, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114, 23322114, 32232114
OFFSET
0,2
COMMENTS
The digits of each term a(n) are a permutation of those of the corresponding term A005151(n). - Chayim Lowen, Jul 16 2015
FORMULA
After a while sequence has period 2.
EXAMPLE
To get the term after 311322, we say: two 3's, two 1's, two 2's, so 232122.
MATHEMATICA
deldup[ lst_ ] := Module[ {i, s}, s={}; For[ i=1, i<=Length[ lst ], i++, If[ !MemberQ[ s, lst[ [ i ] ] ], AppendTo[ s, lst[ [ i ] ] ] ] ]; s ]; next[ term_ ] := FromDigits[ Flatten[ ({Count[ IntegerDigits[ term ], # ], #}&)/@deldup[ IntegerDigits[ term ] ] ] ]
CROSSREFS
A variant of A005150, A005151, etc.
Sequence in context: A098155 A098154 A007890 * A005150 A001388 A305660
KEYWORD
base,easy,nonn
AUTHOR
N. J. A. Sloane, Aug 25 2001
EXTENSIONS
Corrected and extended by Dean Hickerson, Aug 27 2001
STATUS
approved