[go: up one dir, main page]

login
A063736
Patterns of possible squarefree triples of 3 consecutive numbers {4k+1, 4k+2, 4k+3} are coded as follows: compute A008966(x) getting one of {000, 001, 010, 011, 100, 101, 110, 111} and convert to decimal.
1
7, 7, 3, 7, 5, 7, 2, 7, 7, 7, 7, 3, 1, 5, 7, 6, 7, 7, 6, 7, 3, 7, 5, 7, 4, 7, 7, 7, 7, 3, 3, 1, 7, 6, 7, 7, 6, 5, 3, 7, 5, 7, 2, 6, 7, 7, 7, 3, 7, 5, 7, 6, 7, 7, 7, 7, 3, 7, 5, 7, 4, 3, 5, 7, 7, 3, 7, 5, 6, 6, 7, 7, 3, 5, 3, 7, 5, 7, 6, 7, 7, 3, 7, 3, 5, 4, 7, 4, 7, 7, 2, 7, 3, 6, 5, 7, 6, 7, 7, 7, 7, 3, 7, 5, 7
OFFSET
0,1
COMMENTS
All code values arise corresponding to 8 classes of patterns. E.g., the first nonsquarefree triple (000 pattern, code=0) appears at 844, [845, 846, 847], 848 as a middle part of a nonsquarefree 5-tuple. Start values of code=7 triples are listed in A063238.
FORMULA
a(n) = 4*A008966(4n+1)+2*A008966(4n+2)+A008966(4n+3).
EXAMPLE
a(0) = 4*A008966(1)+2*A008966(2)+A008966(3) = 4+2+1 = 7.
a(11) = 4*A008966(45)+2*A008966(46)+A008966(47) = 0+2+1 = 3.
a(12) = 4*A008966(49)+2*A008966(50)+A008966(51) = 0+0+1 = 1.
a(13) = 4*A008966(53)+2*A008966(54)+A008966(55) = 4+0+1 = 5.
a(14) = 4*A008966(57)+2*A008966(58)+A008966(59) = 4+2+1 = 7.
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 24 2001
STATUS
approved