OFFSET
0,1
COMMENTS
A classic calculus analysis problem is to discover whether e^Pi or Pi^e is the greater without the use of a calculator.
REFERENCES
Paul J. Nahin, When Least Is Best, How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible, Princeton University Press, Princeton NJ, 2004, Page 144.
Alfred S. Posamentier & Ingmar Hehmann, Pi: A Biography of the World's Most Mysterious Number, Prometheus Books, NY 2002, pages 146, 301-304.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..20000
EXAMPLE
0.681534914418223532301934163404812352676791108603519744242043855457416... - Harry J. Smith, Aug 24 2009
MATHEMATICA
RealDigits[N[E^Pi - Pi^E, 100]][[1]]
PROG
(PARI) { default(realprecision, 20080); e=exp(1); x=10*(e^Pi - Pi^e); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b063504.txt", n, " ", d)) } \\ Harry J. Smith, Aug 24 2009
CROSSREFS
KEYWORD
AUTHOR
Robert G. Wilson v, Jul 30 2001
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved