[go: up one dir, main page]

login
A062558
Number of nonisomorphic cyclic subgroups of dihedral group with 2n elements.
1
2, 2, 3, 3, 3, 4, 3, 4, 4, 4, 3, 6, 3, 4, 5, 5, 3, 6, 3, 6, 5, 4, 3, 8, 4, 4, 5, 6, 3, 8, 3, 6, 5, 4, 5, 9, 3, 4, 5, 8, 3, 8, 3, 6, 7, 4, 3, 10, 4, 6, 5, 6, 3, 8, 5, 8, 5, 4, 3, 12, 3, 4, 7, 7, 5, 8, 3, 6, 5, 8, 3, 12, 3, 4, 7, 6, 5, 8, 3, 10, 6, 4, 3, 12, 5, 4, 5, 8, 3, 12, 5, 6, 5, 4, 5, 12, 3, 6, 7, 9, 3
OFFSET
1,1
LINKS
FORMULA
a(n) = A000005(n) + A000035(n) = tau(n)+(n mod 2), where tau(n) = the number of divisors of n.
PROG
(PARI) a(n) = numdiv(n) + (n % 2) \\ Michel Marcus, Jun 17 2013
CROSSREFS
Cf. A000005, A000045, A023645, A062249 (labeled case).
One more than A076984.
Sequence in context: A073734 A231335 A271237 * A072789 A126302 A200648
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jul 03 2001
STATUS
approved