[go: up one dir, main page]

login
A062200
Number of compositions of n such that two adjacent parts are not equal modulo 2.
10
1, 1, 1, 3, 2, 6, 6, 11, 16, 22, 37, 49, 80, 113, 172, 257, 377, 573, 839, 1266, 1874, 2798, 4175, 6204, 9274, 13785, 20577, 30640, 45665, 68072, 101393, 151169, 225193, 335659, 500162, 745342, 1110790, 1655187, 2466760, 3675822, 5477917, 8163217, 12164896, 18128529, 27015092
OFFSET
0,4
COMMENTS
Also (0,1)-strings such that all maximal blocks of 1's have even length and all maximal blocks of 0's have odd length.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problems 2.4.3, 2.4.13).
LINKS
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 19.
FORMULA
a(n) = Sum_{j=0..n+1} binomial(n-j+1, 3*j-n+1).
a(n) = 2*a(n-2) + a(n-3) - a(n-4).
G.f.: -(x^2-x-1)/(x^4-x^3-2*x^2+1). More generally, g.f. for the number of compositions of n such that two adjacent parts are not equal modulo p is 1/(1-Sum_{i=1..p} x^i/(1+x^i-x^p)).
G.f.: W(0)/(2*x^2) -1/x^2, where W(k) = 1 + 1/(1 - x*(k - x)/( x*(k+1 - x) - 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
EXAMPLE
From Joerg Arndt, Oct 27 2012: (Start)
The 11 such compositions of n=7 are
[ 1] 1 2 1 2 1
[ 2] 1 6
[ 3] 2 1 4
[ 4] 2 3 2
[ 5] 2 5
[ 6] 3 4
[ 7] 4 1 2
[ 8] 4 3
[ 9] 5 2
[10] 6 1
[11] 7
The 16 such compositions of n=8 are
[ 1] 1 2 1 4
[ 2] 1 2 3 2
[ 3] 1 2 5
[ 4] 1 4 1 2
[ 5] 1 4 3
[ 6] 1 6 1
[ 7] 2 1 2 1 2
[ 8] 2 1 2 3
[ 9] 2 1 4 1
[10] 2 3 2 1
[11] 3 2 1 2
[12] 3 2 3
[13] 3 4 1
[14] 4 1 2 1
[15] 5 2 1
[16] 8
(End)
MATHEMATICA
LinearRecurrence[{0, 2, 1, -1}, {1, 1, 1, 3}, 50] (* Harvey P. Dale, Feb 26 2012 *)
Join[{1}, Table[Sum[ Binomial[n-j+1, 3j-n+1], {j, 0, n-1}], {n, 50}]] (* Harvey P. Dale, Feb 26 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(-(x^2-x-1)/(x^4-x^3-2*x^2+1)) \\ Joerg Arndt, May 13 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Jun 13 2001
STATUS
approved