[go: up one dir, main page]

login
A061911
Square root of the sum of the digits of k^2 when this sum is a square.
2
1, 2, 3, 3, 3, 1, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 1, 2, 3, 4, 4, 3, 2, 3, 4, 5, 3, 4, 5, 4, 4, 4, 4, 4, 3, 5, 5, 5, 4, 5, 3, 5, 4, 5, 5, 2, 3, 4, 4, 3, 4, 5, 4, 5, 4, 4, 5, 4, 4, 4, 3, 5, 5, 6, 4, 5, 5, 5, 5, 5, 5, 3, 4, 4, 4, 5, 3, 4, 3, 5, 4, 5, 4, 5, 4, 3
OFFSET
1,2
FORMULA
a(n) = sqrt(A004159(A061910(n))) = sqrt(A007953((A061910(n))^2)). - Zak Seidov, Jul 04 2012
EXAMPLE
6^2 = 36 and 3+6 = 9 is a square, thus 3 is in the sequence. 13^2 = 169 and 1+6+9 = 16 is a square, thus 4 is in the sequence.
MAPLE
readlib(issqr): f := []: for n from 1 to 200 do if issqr(convert(convert(n^2, base, 10), `+`)) then f := [op(f), sqrt(convert(convert(n^2, base, 10), `+`))] fi; od; f;
MATHEMATICA
Select[Table[Sqrt[Total[IntegerDigits[n^2]]], {n, 350}], IntegerQ] (* Jayanta Basu, May 06 2013 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Asher Auel, May 17 2001
STATUS
approved