[go: up one dir, main page]

login
A061574
Simple quadratic fields (i.e., with a unique prime factorization).
4
-163, -67, -43, -19, -11, -7, -3, -2, -1, 1, 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131, 133, 134, 137, 139, 141, 149
OFFSET
-9,1
COMMENTS
-9 <= m < 0: a(m)= -A003173(-m); a(0) = 1; n > 0: a(n) = A003172(n).
Squarefree values of n for which the quadratic field Q[ sqrt(n) ] is a unique factorization domain, but not necessarily Euclidean. All negative values are listed. - Alonso del Arte, Feb 10 2011
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 14.
LINKS
MATHEMATICA
Select[Range[-200, 200], SquareFreeQ[#] && NumberFieldClassNumber[Sqrt[#]] == 1 &] (* T. D. Noe, Feb 10 2011 *)
CROSSREFS
Union of A003173 and A003172. Some subsequences: A048981 (requires the fields to be Euclidean), A003174, A003172, see also A003173.
Sequence in context: A214236 A349511 A030442 * A185444 A217546 A057604
KEYWORD
sign
AUTHOR
Frank Ellermann, May 17 2001
STATUS
approved