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Lord Brouncker found an infinite family of continued fractions for

Pi that includes the following particular cases [Osler, equation 

4]: for n >= 0 there holds

 1^2/(8*n+6 + 3^2/(8*n+6 + 5^2/(8*n+6 + 7^2/(8*n+6 + ... ))))

  =  ((2*n + 1)!!/(2^n*n!))^2 * Pi - (4*n + 3).

The purpose of this note is to express the continued fraction as a

series: we sketch a proof that for n >= 0,

1^2/(8*n+6 + 3^2/(8*n+6 + 5^2/(8*n+6 + 7^2/(8*n+6 + ... )))) 

 = 4*((2*n + 1)!!)^4 * Sum_{i >= 1} (-1)^(i+1)/((2*i + 1)*    

                                   R(2*n+1, 2*i)*R(2*n+1, 2*i+2)),

where R(n, x) denotes the n-th row polynomial of triangle A060524.

There is a well-known connection between continued fractions and 

orthogonal polynomials so this result may be known, but we were 

unable to find a reference. 

 - - - - - - - - - - - - - - - - - - 

The row polynomials of A060524 are particular examples of Meixner 

polynomials and have the e.g.f.

 F(t, x) = (1 + t)^((x-1)/2)/(1 – t)^((x+1)/2)

         = Sum_{n >= 0} R(n, x)*t^n/n!                    ... (1)

         = 1 + x*t + (1 + x^2)^t^2/2! + (5*x + x^3)*t^3/3!

            + (9 + 14*x*2 + x^4)*t^4/4! + ....
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It is easily verified that the g.f. F(t, x) satisfies 

   4*t*d/dt(F(t, x)) + 2*F(t, x) 

       = (x + 1)*F(t, x + 2) – (x -1)*F(t, x - 2)

which leads to the identity for the row polynomials

  

 (4*n + 2)*R(n, x) = (x + 1)*R(n, x+2) – (x - 1)*R(n, x-2) ... (2)

For each n >= 0, we define a sequence {B_n(k): k >= 0} by setting
   
     B_n(k) = (2*k + 1)!! * R(2*n+1, 2*k+2).

Using (2), it is easy to check that B_n(k) satisfies the 3-term 

recurrence

   B_n(k) = (8*n + 6)*B_n(k-1) + (2*k - 1)^2*B_n(k-2)    ... (3)

for k > = 2.

The initial conditions 

B_n(0) = 2*(2*n + 1)!!^2, B_n(1) = 2*(2*n + 1)!!^2 *(8*n+6) ...(4)

are obtained from the e.g.f. (1) and making use of (2). 

For each n >= 0, we define a second sequence {A_n(k): k >= 0} by 

A_n(k) = B_n(k) * Sum_{i = 1..k} (-1)^(i+1)/((2*i + 1)*

                                R(2*n+1, 2*i)*R(2*n+1, 2*i+2)),

so that 

lim_{k -> oo} A_n(k)/B_n(k) = 

Sum_{i >= 1} (-1)^(i+1)/((2*i + 1)*R(2*n+1, 2*i)*R(2*n+1, 2*i+2)) 

                                                          ... (5)

With a little bit more work one can verify that A_n(k) satisfies 

the same 3-term recurrence as B(n,k):
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 A_n(k) = (8*n + 6)*A_n(k-1) + (2*k – 1)^2*A_n(k-2)   ... (6)

for k >= 2. The initial conditions 

     A_n(0) = 0,  A_n(1) = 1/(2*(2*n + 1)!!^2)           ... (7)

are obtained from the e.g.f. (1) and making use of (2).

We scale the sequences {A_n(k)} and {B_n(k)} by defining

A_n(k) = (2*(2*n + 1)!!^2) * A_n(k)
and

B_n(k) =  B_n(k)/(2*(2*n + 1)!!^2).

The sequences {A_n(k): k >= 0} and {B_n(k): k >= 0} satisfy the 

same 3-term recurrences as {A_n(k) : k >= 0} and {B_n(k) : k >= 0}

From (4) and (7) the initial conditions now become

A_n(0) = 0; A_n(1) = 1; 

B_n(0) = 1; B_n(1) = 8*n + 6. 

By comparison with the fundamental 3-term recurrences satisfied by

the numerators and denominators of the convergents to a 

generalised continued fraction, we find that for n >= 0, k >= 1,

4*((2*n + 1)!!)^4 * A_n(k)/B_n(k) =  A_n(k)/B_n(k) =

 1^2/(8*n+6 + 3^2/(8*n+6 + 5^2/(8*n+6 + ... + (2*k–1)^2/(8*n+6)))).

Letting k -> oo, and using (5), gives

4*((2*n + 1)!!)^4 * lim_{k -> oo} A_n(k)/B_n(k)

 = 4*((2*n + 1)!!)^4 * Sum_{k >= 1} (-1)^(k+1)/((2*k + 1)*    

                                   R(2*n+1, 2*k)*R(2*n+1, 2*k+2))

 = 1^2/(8*n+6 + 3^2/(8*n+6 + 5^2/(8*n+6 + ... + (2*k – 1)^2/(8*n  

                                                   +6 + ... )))).
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