[go: up one dir, main page]

login
A060028
Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 9.
9
1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 10, 11, 16, 16, 22, 23, 29, 29, 36, 34, 41, 37, 40, 32, 32, 14, 6, -22, -44, -90, -130, -203, -270, -378, -487, -642, -803, -1027, -1260, -1568, -1899, -2320, -2774, -3342, -3955, -4706, -5526, -6507, -7579, -8854, -10243, -11872, -13656
OFFSET
0,5
COMMENTS
Difference of the number of partitions of n+8 into 8 parts and the number of partitions of n+8 into 9 parts. - Wesley Ivan Hurt, Apr 16 2019
LINKS
P. A. MacMahon, Perpetual reciprocants, Proc. London Math. Soc., 17 (1886), 139-151; Coll. Papers II, pp. 584-596.
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 2, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, 1, 1, 2, 1, 1, 1, 0, -1, -1, -1, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1).
FORMULA
a(n) = A026814(n+8) - A026815(n+8). - Wesley Ivan Hurt, Apr 16 2019
MATHEMATICA
With[{den=Times@@Table[(1-x^n), {n, 9}]}, CoefficientList[Series[(1-x-x^9)/ den, {x, 0, 60}], x]] (* Harvey P. Dale, May 22 2012 *)
CROSSREFS
Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), this sequence (N=9), A060029 (N=10).
Sequence in context: A085893 A341950 A230167 * A341951 A182410 A341719
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Mar 17 2001
STATUS
approved