[go: up one dir, main page]

login
A059667
Primes p such that x^49 = 2 has no solution mod p, but x^7 = 2 has a solution mod p.
12
4999, 6959, 7351, 11467, 15583, 16073, 20483, 21169, 21757, 30773, 35771, 37339, 38711, 41161, 45179, 46649, 48119, 51157, 51647, 57527, 58997, 64877, 75167, 75853, 80263, 83791, 84869, 85751, 86927, 93983, 95747, 105253, 110251, 115837
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[PrimePi[120000]]], ! MemberQ[PowerMod[Range[#], 49, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 7, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 21 2013 *)
PROG
(PARI) forprime(p=2, 116000, x=0; while(x<p&&x^7%p!=2%p, x++); if(x<p, y=0; while(y<p&&y^(7^2)%p!=2%p, y++); if(y==p, print1(p, ", "))))
(PARI)
N=10^6; default(primelimit, N);
ok(p, r, k1, k2)={
if ( Mod(r, p)^((p-1)/gcd(k1, p-1))!=1, return(0) );
if ( Mod(r, p)^((p-1)/gcd(k2, p-1))==1, return(0) );
return(1);
}
forprime(p=2, N, if (ok(p, 2, 7, 7^2), print1(p, ", ")));
\\ Joerg Arndt, Sep 21 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 04 2001
STATUS
approved